首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The linear blood flow velocity and the diameter of main arteries of the lower extremities were measured before and after a 30-min bicycle ergometer exercise in 18- to 22-year-old healthy male volunteers not involved in professional sports (controls), as well as in highly qualified wrestlers and track-and-field athletes. In comparison to the control group, the track-and-field athletes have wider arteries, whereas the wrestlers have stronger muscles. The arteries become wider during the first minutes after the bicycle ergometer exercise, which is accompanied by a decrease in the linear velocity of the blood flow. The athletes, especially the track-and-field athletes, have a shorter transitional period. The arterial blood flow in an extremity shows a 20% increase in the first minutes after the test; the shortest recovery period for this parameter was found in the track-and-field athletes.  相似文献   

2.
Twelve young women, athletes (n = 6) and nonathletes (n = 6), walked on a treadmill at loads equivalent to approximately 30% Vo2 max for two 50-min periods in three environments: 1) 28 degrees C, 45% rh, 2) 35 degrees C, 65% rh, and 3) 48 degrees C, 10% rh. There were no differences between groups in rectal temperature, heart rate, evaporative heat loss, or mean skin temperature at 28 or 35 degrees C or during the first work period in the 48 degrees C environment. However, a significantly lower cardiac output (Q) and stroke volume (SV) observed for nonathletes by the 46th min of work at 48 degrees C may explain why no nonathletes were able to complete a 2nd h of work while four of six athletes successfully finished the period. It appears that in conditions of severe heat stress (48 degrees C) athletes were able to maintain a cardiac output sufficient to meet the metabolic requirements and the large increase in peripheral blood flow for a longer period of time than nonathletes.  相似文献   

3.
Complex study of regional blood flow, lower limb muscle strength and gait was performed in 159 female patients at the age of 18 to 75 with initial stages of gonarthrosis. It was demonstrated that substantial contractility worsening of involved limb muscles, as well as the decrease of magistral blood flow rate through femoral artery and that of capillary blood flow increment during ischemic functional testing is observed with age and disease stage progressing in patients. The age-related increase of systemic and regional arterial pressure in patients with osteoarthrosis is associated with the decrease of the reserve potential of limb tissue microcirculatory bed.  相似文献   

4.
The region of limb stability (ROLS) is an inertial sensor-based measure of static knee joint stability, defined by thigh and shank movements of the supporting limb during single limb stance. Changes in thigh and shank movements and/or symmetry differences between limbs may predict risk of injury to the less stable limb or the need for rehabilitation. In this study, construct validity of the ROLS metrics was examined in twelve Division I women’s basketball players during pre-season in preparation for their exercise training program. The subjects were categorized based on their injury history during the season: (Group 1) No reported injuries throughout the season, (Group 2) lower limb injury that did not result in missing any games, and (Group 3) lower limb injury that resulted in missing both practice and the remainder of their season. Significant differences were found in ROLS metrics at pre-season between Group 3 and other groups in a prospective cohort study (p < 0.05). Study findings provided pilot data for supporting ROLS as a measure of postural stability impairment and potential risk for lower limb injury in athletes.  相似文献   

5.
Aerobic endurance capacity is partly dependent on blood supply to and metabolic capacity of the active muscles. Recordings of lower limb skin postocclusive hyperaemia with laser Doppler flowmetry can differentiate between patients with lower limb atherosclerosis and healthy controls. In this study, we investigated the relationship between aerobic endurance, calf volume, common femoral artery diameter and time properties of the postocclusive laser Doppler curve. A group of 16 healthy male subjects with values for aerobic endurance which varied from those of untrained men to elite endurance trained athletes were examined. Duration of laser Doppler recorded skin postocclusive hyperaemia was significantly correlated to both aerobic power and anaerobic threshold (P less than 0.01). Hyperaemia in subjects with large common femoral artery diameter was of shorter duration (P less than 0.05). The peak and mean body mass related blood flow during hyperaemia was correlated to anaerobic threshold (P less than 0.05). These results were in agreement with previous studies indicating an effect of endurance training on the blood supply to the muscles concerned.  相似文献   

6.
The extreme thinness of the pulmonary blood-gasbarrier results in high mechanical stresses in the capillary wall whenthe capillary pressure rises during exercise. We have previously shown that, in elite cyclists, 6-8 min of maximal exercise increase blood-gas barrier permeability and result in higher concentrations ofred blood cells, total protein, and leukotrieneB4 in bronchoalveolar lavage (BAL)fluid compared with results in sedentary controls. To test thehypothesis that stress failure of the barrier only occurs at thehighest level of exercise, we performed BAL in six healthy athletesafter 1 h of exercise at 77% of maximalO2 consumption. Controls wereeight normal nonathletes who did not exercise before BAL. In contrastwith our previous study, we did not find higher concentrations of redblood cells, total protein, and leukotriene B4 in the exercising athletescompared with control subjects. However, higher concentrations ofsurfactant apoprotein A and a higher surfactant apoproteinA-to-phospholipid ratio were observed in the athletes performingprolonged exercise, compared with both the controls and the athletesfrom our previous study. These results suggest that, in elite athletes,the integrity of the blood-gas barrier is altered only at extremelevels of exercise.

  相似文献   

7.
The therapeutic effects of isoxsuprine on skin capillary blood flow and viability were studied in arterial buttock flaps, latissimus dorsi myocutaneous flaps, and random skin flaps in pigs. It was observed that parenteral isoxsuprine increased capillary blood flow to the skin of arterial buttock flaps and the skin and muscle of latissimus dorsi myocutaneous flaps in a dose-response manner, with a maximum vascular effect observed at 1.0 mg/kg. However, this maximum effective dose of isoxsuprine did not have any significant effect on skin viability in the cutaneous and myocutaneous flaps compared with the control. Examination of the distribution of capillary blood flow within the flaps at varying distances from the pedicle revealed that isoxsuprine did not increase capillary blood flow or perfusion distance in the distal portion of the skin of arterial buttock flaps, latissimus dorsi myocutaneous flaps, and random skin flaps. The increased capillary blood flow as a result of isoxsuprine treatment was limited only to the arterial portion of the arterial buttock flaps and latissimus dorsi flaps. Therefore, it is concluded that isoxsuprine alone is not effective in augmentation of skin viability in cutaneous and myocutaneous flaps. The pharmacologic action of isoxsuprine on the vasculature in the skin and muscle of flaps was also discussed.  相似文献   

8.
Dependence of hypoxic changes of macro- and microcirculation on the activity of adrenergic receptors in the cooled organism was studied on decentralized shank of cat under perfusion with constant blood flow. After cooling of cat (to 30 degrees C) and blockade of alpha-adrenoreceptors hypoxic hypoxia (10% O2 in N2) caused (a) much greater reduction of precapillary resistance of shank, (b) more striking (by 3 times) increase of capillary filtration coefficient and (c) the increase of capillary pressure and postcapillary resistance in contrast to their decrease to hypoxia under hypothermia before alpha-blockade. Beta-adrenoreceptor blockade had no influence on the changes of the resistance and exchange function of skeletal muscle blood vessels evoked by hypoxia under cooling.  相似文献   

9.
Prolonged training leads to changes in autonomic cardiac balance. This sympathetic and parasympathetic balance can now be studied using heart rate variability (HRV). Studies have shown that endurance athletes have an elevated level of parasympathetic tone in comparison to sedentary people. The effect of resistance training on autonomic tone is less clear. We hypothesized a significant difference in HRV indices in endurance-trained vs. power-trained track-and-field athletes. One hundred forty-five athletes (58 women) were tested prior to the 2004 U.S.A. Olympic Trials. Heart rate variability data were collected using the Omegawave Sport Technology System. Subjects were grouped according to training emphasis and gender. The mean age of the athletes was 24.8 years in each group. There were significant (p < 0.01) differences by sex in selected frequency domain variables (HFnu, LFnu, LH, LHnu) and for PNN50 (p < 0.04) for the time domain variables. Two-factor analyses of variance showed differences for only the main effect of sex and not for any other grouping method or interaction. Elite athletes have been shown to have higher parasympathetic tone than recreational athletes and nonathletes. Our data show differences by sex, but not between aerobically and power-based athletes. Whether this is due to an aerobic component of resistance training, an overall prolonged training effect, or some genetic difference remains unclear. Further study is needed to assess the impact of resistance training programs on autonomic tone and cardiovascular fitness. This information will be valuable for the practitioner to use in assessing an athlete's response to a prescribed training regimen.  相似文献   

10.
A high angular velocity of the thigh of the stance limb, generated by hip extensor musculature, is commonly thought to be a performance-determining factor in sprint running. However, the thigh segment is a component of a linked system (i.e., the lower limb), therefore, it is unlikely that the kinematics of the thigh will be due exclusively to the resultant joint moment (RJM) at the hip. The purpose of this study was to quantify, by means of segment-interaction analysis, the determinants of sagittal plane kinematics of the lower limb segments during the stance phase of sprint running. Video and ground reaction force data were collected from four male athletes performing maximal-effort sprints. The analysis revealed that during the first-third of the stance phase, a hip extension moment was the major determinant of the increasing angular velocity of the thigh. However, during the mid-third of stance, hip and knee extension moments and segment interaction effects all contributed to the thigh attaining its peak angular velocity. Extension moments at the ankle, and to a lesser extent the knee, were attributed with preventing the 'collapse' of the shank under the effects of the interactive moment due to ground reaction force. The angular acceleration of the foot was determined almost completely by the RJM at the ankle and the interactive moment due to ground reaction force. Further research is required to determine if similar results exit for a wide range of athletes and for other stages of a sprint race (e.g. early acceleration, maximal velocity, and deceleration phases).  相似文献   

11.
On the basis of the data of rheovasography (RVG) and laser Doppler flowmetry, comparative analysis of age-related changes in the peripheral blood circulation in hand tissues has been performed in 36 apparently healthy subjects aged 4–30 years and in 19 patients aged 18–50 years under the conditions of prolonged traction during surgical lengthening of finger bone stumps. The age-related changes in RVG are characterized by a higher volumetric blood content of tissues in children and adolescents, a decrease in the peripheral vascular tone, and wavelike recovery of capillary blood flow during reactive hyperemia, which is evidence for an unstable capillary tone. The dynamics of RVG indices during graded stretching in vivo (distraction) shows the dominance of an enhanced peripheral tone of arterioles and venules, and the response of the hand skin capillary bed to a 3-min ischemic test is analogous to the dynamics of indices of capillary blood flow in the hand skin of children.  相似文献   

12.
The present study aimed to examine the sex differences in the cross-sectional areas of the psoas major, quadriceps femoris, hamstrings, and adductors in high school track and field athletes and nonathletes. The cross-sectional areas of the psoas major at L4-L5 and three thigh muscles at the mid-thigh were determined in the right side of the body using magnetic resonance imaging in 61 sprinters (29 boys and 32 girls), 50 jumpers (28 boys and 22 girls), 33 throwers (18 boys and 15 girls), and 40 nonathletes (20 boys and 20 girls), aged from 16 to 18 yrs. On the whole, the cross-sectional area for every muscle group was greater in the athletes than in the nonathletes and in the boys than in the girls. The average value of the cross-sectional area for the girls as a percentage of that for the boys in every subject group was lower in the psoas major (57.6-64.7%) than in the thigh muscles (67.8-82.9%). Among the thigh muscles, the muscle group which showed significant sex differences in the ratio of cross-sectional area to the two-third power of lean body mass was limited to the quadriceps femoris in the sprinters and nonathletes and hamstrings in the throwers. However, the ratio for the psoas major was significantly higher in the boys than in the girls in all subject groups. The current results indicate that, although regular participation in sports training during adolescence promotes hypertrophy in the psoas major and thigh muscles in not only boys but also girls, a greater sex difference exists in the muscularity of the psoas major than of the thigh muscles, in athletes and nonathletes.  相似文献   

13.
It was shown that the mean value of the heart’s chronotropic response to vestibular stimulation at different positions of the head and the duration of the sensory response (a vestibular illusion of counter-rotation) in athletes were inversely related to the relative amount of angular accelerations in exercises performed by athletes of different specializations. The strengths of the systolic blood pressure response were the same in athletes of different specializations. The strength and frequency of hand movements increased during the rotational load, and the accuracy of the reproduction of a specified effort declined; however, these changes were also unrelated to sporting specialization. In nonathletes, these parameters were reduced, the accuracy of effort being much more decreased than in athletes.  相似文献   

14.
The adaptive radiation of mammalian clades has involved marked changes in limb morphology that have affected not only the skeleton but also the integumentary structures. For example, didelphid marsupials show distinct differences in nail and claw morphology that are functionally related to the evolution of arboreal, terrestrial, and aquatic foraging behaviors. Vespertilionoid bats have evolved different volar pad structures such as adhesive discs, scales, and skin folds, whereas didelphid marsupials have apical pads covered either with scales, ridges, or small cones. Comparative analysis of pad and claw development reveals subtle differences in mesenchymal and ectodermal patterning underlying interspecific variation in morphology. Analysis of gene expression during pad and claw development reveals that signaling molecules such as Msx1 and Hoxc13 play important roles in the morphogenesis of these integumentary structures. These findings suggest that evolutionary change in the expression of these molecules, and in the response of mesenchymal and ectodermal cells to these signaling factors, may underlie interspecific differences in nail, claw, and volar pad morphology. Evidence from comparative morphology, development, and functional genomics therefore sheds new light on both the patterns and mechanisms of evolutionary change in mammalian limb integumentary structures.  相似文献   

15.
Cutaneous circulation in 4 X 10 cm skin samples and delayed and acute random skin flaps constructed on the flanks of castrated Yorkshire pigs (13.3 +/- 0.7 kg; n = 12) were studied during intravenous infusion (0.5 ml per minute) of 5% dextrose solution (vehicle) and 5% dextrose containing norepinephrine (1 microgram/kg per minute). Total and capillary blood flow and A-V shunt flow were measured by the radioactive microsphere technique 6 hours after the raising of 4 X 10 cm single-pedicle acute and delayed random skin flaps using the technique and calculations published previously. Fluorescein dye test was also performed to assess vascular perfusion. It was observed that the capillary blood flow in the single-pedicle delayed skin flaps was similar to that in the normal skin, and the maintenance of this normal skin blood flow was not due to the closing of A-V shunt flow in the delayed skin flaps. Similarly, the significant (p less than 0.01) decrease in capillary blood flow and distal perfusion in the acute skin flaps compared with the delayed skin flaps was not due to the opening of A-V shunts in the acute skin flaps. There was no evidence to indicate that A-V shunt flow per se was the primary factor for the regulation of capillary blood flow in the acute and delayed skin flaps in the pig. Our data seemed to indicate that tissue ischemia in the distal portion of acute skin flaps was likely the result of vasoconstriction of the small random arteries which supplied blood to arterioles and A-V shunts, and locally released neurohumoral substances may play an important role in the pathogenesis of vascular resistance and ischemia in the acute skin flaps.  相似文献   

16.
The Spontaneously Hypertensive rat (SHR) and its non-hypertensive companion strain, the Wistar-Kyoto (WKY) rat, provide an excellent comparative model to permit study of the differential properties of cutaneous microvascular beds. We explored the possibility that chronically elevated vascular pressures in the SHR rat might affect the microvascular constitution of the skin. We measured skin blood flow at the back and at the paw of a group of 20-week-old WKY rats and a contrast group of SHR rats. We then performed skin biopsies at these two locations and used the NIH Image program to count and measure the size of capillaries, arterioles, and venules. We also determined microvascular density as percentage of total tissue area. At basal temperature, skin blood flow was similar in the two rat strains at both the back and paw. Heat induced vasodilatation resulted in a 50% increase in blood flow at the back, reaching the same level in the two rat groups. However, at the paw site, thermal stimulation resulted in significantly greater flow (39.3 +/- 3.1 ml/100 gm tissue per min) in the SHR rats than the WKY rats (28.6 +/- 1.9 ml/100 gm tissue per min, P < 0.05). The ratio of systemic arterial pressure to skin blood flow was computed as an index of vascular resistance to flow. At basal temperature, this index was 50% greater for the SHR rats at both skin sites. At 44 degrees C, the resistance index decreased at both sites in both rat groups but was still approximately 50% higher at the back of the SHR than the WKY rats. In contrast, the resistance index at 44 degrees C at the paw site fell to the same level in both the SHR and WKY rats. There were twice as many capillaries at the back of the WKY rats than at the back of the SHR rats (9.2 +/- 2.0 per mm2 vs. 4.7 +/- 1.2 per mm2, P < 0.05). Expressed as a percentage of total tissue area, the capillary density at the back in the WKY rats was 0.064 +/- 0.010% as compared to 0.034 +/- 0.008% in the SHR rats (P < 0.05). There were five times more arterioles at the paw compared to the back in both rat groups with no significant difference between the groups. We measured the diameter of the lumen and the thickness of the wall of each arteriole and computed their ratio as an index of possible media hypertrophy. There were minimal differences seen in these parameters between the two rat groups at the back and paw sites. The venular density was significantly higher at the paw than at the back in both rat groups with no significant difference between them. Reduced capillary density at the back of the SHR rats may be a developmental adaptation to high blood pressure. Such a reduction in the pathways of blood flow may help account for increased flow resistance at that site, independent of arteriolar vasoconstriction.  相似文献   

17.
In eight pigs, total blood flow, regional capillary blood flow distribution, and arteriovenous (AV) shunting were studied during the first 4 postoperative hours after elevation of a myocutaneous rectus abdominis island flap. Capillary blood flow and AV shunting were measured using radioactive microspheres before flap creation and 1 and 4 hours after surgery. Total blood flow, measured continuously as venous outflow, increased in the first postoperative hour (p less than 0.05). Elevation of the flap caused a slight decrease in skin capillary blood flow (p less than 0.05), whereas muscular capillary blood flow increased (p less than 0.01). AV shunting accounted for 50 percent of the total flap blood flow, whereas it was negligible in the abdominal wall prior to flap elevation. Thus stalk blood flow, skin appearance, and skin temperature may be poor indicators of nutritional capillary perfusion. However, the clinical and nutritional consequences of these findings remain to be established.  相似文献   

18.
In a cross-sectional study, central and peripheral arteries were investigated noninvasively in high-performance athletes and in untrained subjects. The diastolic inner vessel diameter (D) of the thoracic and abdominal aorta, the subclavian artery (Sub), and common femoral artery (Fem) were determined by duplex sonography in 18 able-bodied professional tennis players, 34 able-bodied elite road cyclist athletes, 26 athletes with paraplegia, 17 below-knee amputated athletes, and 30 able-bodied, untrained subjects. The vessel cross-sectional areas (CSA) were set in relation to body surface area (BSA), and the cross-section index (CS-index = CSA/BSA) was calculated. Volumetric blood flow was determined in Sub and Fem via a pulsed-wave Doppler system and was set in relation to heart rate to calculate the stroke flow. A significantly increased D of Sub was found in the racket arm of able-bodied tennis players compared with the opposite arm (19%). Fem of able-bodied road cyclist athletes and of the intact limb in below-knee amputated athletes showed similar increases. D of Fem was lower in athletes with paraplegia (37%) and in below-knee amputated athletes proximal to the lesion (21%) compared with able-bodied, untrained subjects; CS-indexes were reduced 57 and 31%, respectively. Athletes with paraplegia demonstrated a larger D (19%) and a larger CS-index in Sub (54%) than able-bodied, untrained subjects. No significant differences in D and CS-indexes of the thoracic and abdominal aorta were found between any of the groups. The changes measured in Sub and Fem were associated with corresponding alterations in blood flow and stroke flow in all groups. The study suggests that the size and blood flow volume of the proximal limb arteries are adjusted to the metabolic needs of the corresponding extremity musculature and underscore the impact of exercise training or disuse on the structure and the function of the arterial system.  相似文献   

19.
Twelve male runners and 12 matched nonathletes performed a prolonged uninterrupted graded exercise test on the bicycle ergometer up to exhaustion to study blood pressure and plasma levels of renin (PRA), vasoconstrictor angiotensin II (ANG II), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), a metabolite of the vasodilator prostacyclin. In the athletes work load was increased by 30 W/4 min, and in the control subjects the increments of work load were adjusted to their lower exercise capacity to equalize total exercise duration. Blood was drawn, and blood pressure and O2 uptake (VO2) were measured at rest and at the fourth, eighth, and last steps of exercise. Peak VO2 averaged 60 +/- 1.6 ml . min-1 . kg-1 in the runners and 46.8 +/- 1.5 in the nonathletes. To evaluate differences between athletes and controls, PRA, ANG II, and 6-keto-PGF1 alpha were first adjusted for significant confounding factors, such as age, weight, hematocrit, 24-h urinary sodium excretion, and O2 uptake. PRA was significantly lower in the athletes (F = 11.2; P less than 0.01); ANG II was not different at rest, but its rise with exercise was less steep in the runners (F = 8.2; P less than 0.01), whereas 6-keto-PGF1 alpha was not different between the groups (F = 1.3; NS). Despite the differences in PRA and ANG II, however, blood pressure was similar in athletes and nonathletes (F = 0.0; NS).  相似文献   

20.
Hu F  Zha D  Du R  Chen X  Zhou B  Xiu J  Bin J  Liu Y 《Biorheology》2011,48(3-4):149-159
Drag-reducing polymers (DRPs) are blood-soluble macromolecules that can increase blood flow and reduce vascular resistance. The purpose of the present study is to examine the effects of DRPs on microcirculation in rat hind limb during acute femoral artery occlusion. Two groups of 20 male Wistar rats were subjected to either hemodynamic measurement or contrast enhanced ultrasound (CEU) imaging during peripheral ischemia. Both groups were further subdivided into a DRP-treated group or a saline-treated group. Polyethylene oxide (PEO) was chosen as the test DRP, and rats were injected with either 10 ppm PEO solution or saline through the caudal vein at a constant rate of 5 ml/h for 20 min. Abdominal aortic flow, iliac artery pressure, iliac vein pressure, heart rate, carotid artery pressure and central venous pressure (CVP) were monitored, and vascular resistance was calculated by (iliac artery pressure-iliac vein pressure)/abdominal aortic blood flow. Flow perfusion and capillary volume of skeletal muscle were measured by CEU. During PEO infusion, abdominal aortic blood flow increased (p<0.001) and vascular resistance decreased (p<0.001) compared to rats that received saline during peripheral ischemia. There was no significant change in ischemic skeletal capillary volume (A) with DRP treatment (p>0.05), but red blood cell velocity (β) and capillary blood flow (A×β) increased significantly (p<0.05) during PEO infusion. In addition, A, β and A×β all increased (p<0.05) in the contralateral hind limb muscle. In contrast, PEO had no significant influence on heart rate, mean carotid artery blood pressure or CVP. Intravenous infusion of drag reducing polymers may offer a novel hydrodynamic approach for improving microcirculation during acute peripheral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号