首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral Reefs - Many predators reported to feed on crown-of-thorns starfish (CoTS, Acanthaster spp.) are generalist and opportunistic feeders. However, research into predation on CoTS tends to...  相似文献   

2.
3.
Infectious diseases are recognized as significant contributors to the dramatic loss of corals observed worldwide. However, the causes of increased coral disease prevalence and severity are not well understood. One potential factor is elevated nutrient concentration related to localized anthropogenic activities such as inadequate waste water treatment or terrestrial runoff. In this study the effect of nutrient enrichment on the progression of black band disease (BBD) was investigated using both in situ and laboratory experiments. Experimental increases in localized nutrient availability using commercial time release fertilizer in situ resulted in doubling of BBD progression and coral tissue loss in the common reef framework coral Siderastrea siderea. Laboratory experiments in which artificially infected S. siderea colonies were exposed to increased nitrate concentrations (up to 3 μM) demonstrated similar increases in BBD progression. These findings provide evidence that the impacts of this disease on coral populations are exacerbated by nutrient enrichment and that management to curtail excess nutrient loading may be important for reducing coral cover loss due to BBD.  相似文献   

4.
Black band disease (BBD) is a virulent polymicrobial disease primarily affecting massive-framework-building species of scleractinian corals. While it has been well established that the BBD bacterial mat is dominated by a cyanobacterium, the quantitative composition of the BBD bacterial mat community has not described previously. Terminal-restriction fragment length polymorphism (T-RFLP) analysis was used to characterize the infectious bacterial community of the bacterial mat causing BBD. These analyses revealed that the bacterial composition of the BBD mat does not vary between different coral species but does vary when different species of cyanobacteria are dominant within the mat. On the basis of the results of a new method developed to identify organisms detected by T-RFLP analysis, our data show that besides the cyanobacterium, five species of the division Firmicutes, two species of the Cytophaga-Flexibacter-Bacteroides (CFB) group, and one species of delta-proteobacteria are also consistently abundant within the infectious mat. Of these dominant taxa, six were consistently detected in healthy corals. However, four of the six were found in much higher numbers in BBD mats than in healthy corals. One species of the CFB group and one species of Firmicutes were not always associated with the bacterial communities present in healthy corals. Of the eight dominant bacteria identified, two species were previously found in clone libraries obtained from BBD samples; however, these were not previously recognized as important. Furthermore, despite having been described as an important component of the pathogenetic mat, a Beggiatoa species was not detected in any of the samples analyzed. These results will permit the dominant BBD bacteria to be targeted for isolation and culturing experiments aimed at deciphering the disease etiology.  相似文献   

5.
A ciliate associated with the coral disease brown band (BrB) was identified as a new species belonging to the class Oligohymenophorea, subclass Scuticociliatia. The ciliates were characterized by the presence of large numbers of intracellular dinoflagellates and displayed an elongated, tube-shaped body structure. They had uniform ciliature, except for three distinct cilia in the caudal region, and were typically 200 to 400 microm in length and 20 to 50 microm in width.  相似文献   

6.
Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.  相似文献   

7.
The microenvironmental dynamics of the microbial mat of black band disease (BBD) and its less virulent precursor, cyanobacterial patch (CP), were extensively profiled using microsensors under different light intensities with respect to O2, pH and H2S. BBD mats exhibited vertical stratification into an upper phototrophic and lower anoxic and sulphidic zone. At the progression front of BBD lesions, high sulphide levels up to 4977 μM were measured in darkness along with lower than ambient levels of pH (7.43±0.20). At the base of the coral–BBD microbial mat, conditions were hypoxic or anoxic depending on light intensity exposure. In contrast, CP mats did not exhibit strong microchemical stratification with mostly supersaturated oxygen conditions throughout the mats at all light intensities and with levels of pH generally higher than in BBD. Two of three replicate CP mats were devoid of sulphide, while the third replicate showed only low levels of sulphide (up to 42 μM) present in darkness and at intermediate light levels. The level of oxygenation and sulphide correlated well with lesion migration rates, that is virulence of the mats, which were greater in BBD than in CP. The results suggest that biogeochemical microgradients of BBD shaped by the complex microbial community, rather than a defined pathogen, are the major trigger for high virulence and the associated derived coral mortality of this disease.  相似文献   

8.
Microbial communities associated with black band disease (BBD) in massive stony corals from the Northern Red Sea (Eilat) were examined for the first time using molecular tools and microscopy. A high microbial diversity was revealed in the affected tissue in comparison with the healthy area of the same colony. Microscopy revealed the penetration of cyanobacteria into the coral mesoglea and adjacent tissues. Cyanobacterial sequences from Red Sea BBD-affected corals formed a cluster with sequences previously identified from black band and red band diseased corals from the Indo-Pacific and Caribbean. In addition, 11 sequences belonging to the genus Vibrio were retrieved. This group was previously documented as pathogenic to corals. Sulfate-reducing bacteria, a group known to be associated with BBD and produce toxic sulfide, were studied using specific primers for the amplification of the dissimilatory sulfite reductase gene (dsrA). This technique facilitated and improved the resolution of the study of diversity of this group. All the sequences obtained were closely related to sequences of the genus Desulfovibrio and 46% showed high homology to Desulfovibrio desulfuricans. The complex nature of BBD and the lack of success in isolating a single causative agent suggest that BBD may be considered a polymicrobial disease.  相似文献   

9.
Research into causative agents underlying coral disease have focused primarily on bacteria, whereas potential roles of viruses have been largely unaddressed. Bacteriophages may contribute to diseases through the lysogenic introduction of virulence genes into bacteria, or prevent diseases through lysis of bacterial pathogens. To identify candidate phages that may influence the pathogenicity of black band disease (BBD), communities of bacteria (16S rRNA) and T4-bacteriophages (gp23) were simultaneously profiled with amplicon sequencing among BBD-lesions and healthy-coral-tissue of Montipora hispida, as well as seawater (study site: the central Great Barrier Reef). Bacterial community compositions were distinct among BBD-lesions, healthy coral tissue and seawater samples, as observed in previous studies. Surprisingly, however, viral beta diversities based on both operational taxonomic unit (OTU)-compositions and overall viral community compositions of assigned taxa did not differ statistically between the BBD-lesions and healthy coral tissue. Nonetheless, relative abundances of three bacteriophage OTUs, affiliated to Cyanophage PRSM6 and Prochlorococcus phages P-SSM2, were significantly higher in BBD-lesions than in healthy tissue. These OTUs associated with BBD samples suggest the presence of bacteriophages that infect members of the cyanobacteria-dominated BBD community, and thus have potential roles in BBD pathogenicity.  相似文献   

10.
The abundance of lesions from fish bites on corals was quantified at nine shallow reefs in the main Hawaiian Islands. There were on average 117 bite scars m−2 on Pocillopora meandrina tissue from the barred filefish Cantherhines dumerilii, 69 bites m−2 on Porites compressa tissue, and 4 bites m−2 on Porites lobata tissue from the spotted puffer Arothron meleagris. Across sites, the frequency of A. meleagris bites on P. compressa per unit area of living coral cover declined exponentially with increasing coral cover. P. compressa nubbins in two size classes (1–2 cm and 4–5 cm) were transplanted onto six study reefs. Nubbins in the small size class were entirely removed by bites from A. meleagris, while nubbins ≥4 cm were only partially consumed, leaving them able to recover. At sites with abundant P. compressa, predation had little effect on transplanted nubbins; at sites where P. compressa comprised less than 5% of living cover, all nubbins were preyed upon. A. meleagris bite lesions on P. compressa were monitored through time and fully recovered in 42 ± 4 days. A model of the risk of over-predation (a second predation event before the first is healed) decreased exponentially with increasing coral cover and increased linearly with increasing lesion healing time. The increased risk of over-predation at low coral cover could indicate an Allee effect limiting the recovery of coral populations if coral cover is substantially reduced by natural or anthropogenic disturbances.  相似文献   

11.
To test whether commercially exploited fishes could regulate populations of crown-of-thorns starfish, laboratory reared juvenile Acanthaster planci were planced on small habitat units in an area of a lagoon where a number of species of fish that feed on benthic invertebrates occurred. Predators were excluded from half the units using wire mesh. In 35 days, losses were low and there was no statistically significant difference between caged and uncaged units. A difference in mortality rate of 1% of individuals per day would have been detected with >85% probability.However, the observed mean difference, the maximum estimate of predatory mortality, was 0.13% of starfish per day. It thus seems unlikely that predation by any large fishes was important in the population dynamics of juvenile A. planci at that site at the time of this experiment. Juvenile starfish were presented to lethrinids in the field at two reefs. Thirteen percent of juvenile A. planci presented at one reef were eaten, but in no presentation did lethrinids eat all the available starfish and those that were eaten were often mouthed and rejected by several fish before being swallowed. No juveniles were taken in a smaller number of trials at the second reef. These results do not favour the hypothesis that predation on juveniles by large fish is important in the population dynamics of A. planci but experiments at more sites will be required before this conclusion can be generalized.  相似文献   

12.
Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes (Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.  相似文献   

13.
14.
Over the last 30 years, the crown-of-thorns starfish (Acanthaster planci) has caused extensive damage to many reefs in the Great Barrier Reef Province. Surface sediment of two such reefs, John Brewer Reef and Green Island Reef, has high densities of A. planci skeletal elements relative to their abundance in the surface sediment of Heron Island Reef which, during the same 30 years, maintained very low-density starfish populations. Carbon-14 accelerator mass spectrometry (AMS) dating indicates that skeletal elements from the surface sediment of John Brewer and Green Island Reefs are of contemporary age. Core sampling shows that subsurface sediment at John Brewer and Green Island Reefs contains A. planci element densities comparable to those found in the surface sediment at these localities. Physical and biological eworking of elements within the sediment precludes the recognition of individual outbreaks in core stratigraphy. AMS element dates and conventional bulk sediment dates show that subsurface elements are generally prehistoric and conform to an age structure preserved in the sediment pile. The density and distribution of subsurface elements suggest that A. planci outbreaks are not a recent phenomenon, but have been an integral part of the ecosystem for at least 7000 years on John Brewer Reef and 3000 years on Green Island Reef.  相似文献   

15.
Coral Reefs - Soft corals are well known for producing toxic and unpalatable compounds to deter predation. In spite of these antipredation defences, a suite of specialised predators has coevolved...  相似文献   

16.
Aims: To determine the relationship between yellow band disease (YBD)-associated pathogenic bacteria found in both Caribbean and Indo-Pacific reefs, and the virulence of these pathogens. YBD is one of the most significant coral diseases of the tropics. Materials and Results: The consortium of four Vibrio species was isolated from YBD tissue on Indo-Pacific corals: Vibrio rotiferianus, Vibrio harveyi, Vibrio alginolyticus and Vibrio proteolyticus. This consortium affects Symbiodinium (zooxanthellae) in hospite causing symbiotic algal cell dysfunction and disorganization of algal thylakoid membrane-bound compartment from corals in both field and laboratory. Infected corals have decreased zooxanthella cell division compared with the healthy corals. Vibrios isolated from diseased Diploastrea heliopora, Fungia spp. and Herpolitha spp. of reef-building corals display pale yellow lesions, which are similar to those found on Caribbean Montastraea spp. with YBD. Conclusions: The Vibrio consortium found in YBD-infected corals in the Caribbean are close genetic relatives to those in the Indo-Pacific. The consortium directly attacks Symbiodinium spp. (zooxanthellae) within gastrodermal tissues, causing degenerated and deformed organelles, and depleted photosynthetic pigments in vitro and in situ. Infected Fungia spp. have decreased cell division compared with the healthy zooxanthellae: 4·9%vs 1·9%, (P ≥ 0·0024), and in D. heliopora from 4·7% to 0·7% (P ≥ 0·002). Significance and Impact of the Study: Pathogen virulence has major impacts on the survival of these important reef-building corals around the tropics.  相似文献   

17.
18.
To determine what happens to scleractinian corals that have been killed by black band disease (BBD), massive corals with BBD were monitored for 11 years on a shallow reef (<10 m depth) in St. John, US Virgin Islands. Small quadrats (0.039 m2) were used to compare the rates of scleractinian recruitment to the skeletons of corals killed by either BBD or physical disturbance (Hurricane Hugo 1989). Coral recruitment was also quantified on the adjacent fringing reef using larger quadrats (0.25 m2) to detect possible biases associated with using small, permanent quadrats to assess recruitment to BBD-killed corals. Of 28 tagged colonies with BBD in 1988, 43% were lost to Hurricane Hugo in 1989, 7% were lost to unknown causes between 1991 and 1992, and 14 were monitored annually for 11 years; of these, 71% were dead and still in their original growth position in 1998. Between 1988 and 1997, corals recruited to the BBD-killed surfaces at a rate of 1.1 ± 0.3 recruits · 0.039 m−2 · decade−1 (mean ± SE, n = 14), although mortality reduced the density to 0.3 ± 0.2 recruits · 0.039 m−2 by 1997. The rate of recruitment and the taxonomic composition of the coral recruits to BBD-killed corals were indistinguishable statistically from those to corals killed by Hurricane Hugo. This demonstrates that BBD creates space that is functionally the same as other dead coral surfaces in providing a substratum for coral recruitment. However, because coral recruits are dispersed widely, clumped in distribution and temporally variable in density on the fringing reef as a whole, it is unlikely that they will be found on monitored coral colonies that have been killed by BBD. While this hypothesis is consistent with the higher density of recruits on the fringing reef compared with BBD-killed corals, further studies are required to investigate alternative explanations such as the role of substratum age in favoring recruitment to surfaces other than those killed recently by BBD. Accepted: 26 August 1999  相似文献   

19.
Black band disease (BBD) is a migrating, cyanobacterial dominated, sulfide-rich microbial mat that moves across coral colonies lysing coral tissue. While it is known that BBD sulfate-reducing bacteria contribute to BBD pathogenicity by production of sulfide, additional mechanisms of toxicity may be involved. Using HPLC/MS, the cyanotoxin microcystin was detected in 22 field samples of BBD collected from five coral species on nine reefs of the wider Caribbean (Florida Keys and Bahamas). Two cyanobacterial cultures isolated from BBD, Geitlerinema and Leptolyngbya sp. contained microcystin based on HPLC/MS, with toxic activity confirmed using the protein phosphatase inhibition assay. The gene mcyA from the microcystin synthesis complex was detected in two field samples and from both BBD cyanobacterial cultures. Microcystin was not detected in six BBD samples from a different area of the Caribbean (St Croix, USVI) and the Philippines, suggesting regional specificity for BBD microcystin. This is the first report of the presence of microcystin in a coral disease.  相似文献   

20.
Breeding activity increases the vulnerability of many animals to predation, and such predation can affect the subset of animals successfully reproducing. To study the ways in which predation might affect the evolution of Pacific salmon, we measured the intensity and selectivity of predation by bears (primarily brown bears, Ursus arctos) on mature sockeye salmon (Oncorhynchus nerka) breeding in a series of small, spring-fed ponds and creeks near Pedro Bay, Alaska, from 1994 to 1998. Bears killed male salmon more often than females; males constituted 60% of the kills but only 35% of the salmon that died of senescence. The bears also killed fish that were larger, on average, than those dying of senescence (males: 462 vs 452 mm; females: 453 vs 443 mm). The level of predation varied greatly, from 4% (females) and 10% (males) in 1994 to 100% of both sexes in 1996 and 1997. The rate of predation also varied among habitats, being lower in larger ponds than in smaller, shallower ponds and the very small interconnecting creeks. Despite the intense and size-selective predation, the salmon in safer habitats (large ponds) were not larger than those in riskier habitats, and salmon densities were only slightly higher in the safer areas. Compared to a nearby population that experiences no bear predation (Woody Island), the male sockeye salmon from the Pedro Pond system had shallower bodies (i.e., less exposure in shallow water) for a given length, consistent with the hypothesis that selective predation can affect the extent of sexual dimorphism among populations. However, the average length at age for both males and females was greater in the Pedro Pond fish, indicating that selective factors besides predation affect length. Overall, the results indicate that bears can be an agent of natural selection within (and perhaps between) sockeye salmon populations, and predation can greatly affect reproductive success among individuals and years for the population as a whole. Received: 6 April 1999 / Accepted: 1 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号