首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies demonstrated that inflammatory reaction and neuronal apoptosis are the most important pathological mechanisms in ischemia-induced brain damage. Propofol has been shown to attenuate ischemic brain damage via inhibiting neuronal apoptosis. The present study was performed to evaluate the effect of propofol on brain damage and inflammatory reaction in rats of focal cerebral ischemia. Sprague–Dawley rats underwent permanent middle cerebral artery occlusion, then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 h of ischemia. Neurological deficit scores, cerebral infarct size and morphological characteristic were measured 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was assessed 24 h after cerebral ischemia. Nuclear factor-kappa B (NF-κB) p65 expression in ischemic rat brain was detected by western blot. Cyclooxygenase-2 (COX-2) expression in ischemic rat brain was determined by immunohistochemistry. ELISA was performed to detect the serum concentration of tumor necrosis factor-α (TNF-α). Neurological deficit scores, cerebral infarct size and MPO activity were significantly reduced by propofol administration. Furthermore, expression of NF-κB, COX-2 and TNF-α were attenuated by propofol administration. Our results demonstrated that propofol (10 and 50 mg/kg) reduces inflammatory reaction and brain damage in focal cerebral ischemia in rats. Propofol exerts neuroprotection against ischemic brain damage, which might be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory genes.  相似文献   

2.
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood–brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P?<?0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P?<?0.001) without changing BBB permeability (P?>?0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P?<?0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.  相似文献   

3.
Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.  相似文献   

4.
Previous studies have demonstrated that the c-Jun N-terminal kinase (JNK) pathway plays an important role in inducing neuronal apoptosis following cerebral ischemic injury. JNK signaling pathway in activated during cerebral ischemic injury. It participates in ischemia-induced neuronal apoptosis. However, whether JNK signaling is involved in the process of neuronal apoptosis of diabetes-induced cerebral ischemia is largely unknown. This study was undertaken to evaluate the influence of cerebral ischemia–reperfusion injury on phosphorylation of JNK in diabetic rats. Twenty-four adult streptozotocin induced diabetic and 24 adult non-diabetic rats were randomly subjected to 15 min of forebrain ischemia followed by reperfusion for 0, 1, 3, and 6 h. Sixteen sham-operated diabetic and non-diabetic rats were used as controls. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Protein expression of phospho-JNK was examined by immunohistochemistry and Western blot. The numbers of TUNEL-positive cells and phospho-JNK protein expression in the cerebral cortices after 1, 3 and 6 h reperfusion was significantly higher in diabetic rats compared to non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). Western blot analysis showed significantly higher phospho-JNK protein expression in the cerebral cortices of the diabetic rats after 1 and 3 h reperfusion than that was presented in non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). These findings suggest that increased phosphorylation of JNK may be associated with diabetes-enhanced ischemic brain damage.  相似文献   

5.
Tumor necrosis factor (TNF) and the TNF receptor (TNFR) superfamily play very important roles for cell death as well as normal immune regulation. Previous studies have strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. The purpose of this investigation was to examine the protective effect of remifentanil preconditioning in cerebral ischemia/reperfusion injury (CIR) and its possible molecular mechanism. Results showed that Remifentanil pretreatment significantly decreased the CD4+ and increased the CD8+ in cerebral tissues. Additionally, CD4+/CD8+ in CIR + Remifentanil group was markedly lower than that in CIR group. TNF-α and TNFR1 in CIR + Remifentanil group rats was found to be significant lower than that in CIR group rats. The expression levels of Cyt-c, caspase-3, caspase-9 and pJNK proteins in brain of CIR + Remifentanil group rats were found to significantly decreased compared to CIR group rats. In addition, decreased ROS level indirectly inhibit JNK activation and cell death in CIR rat receiving Remifentanil preconditioning. From current experiment results, at least two signal pathways involve into the process of Remifentanil preconditioning inhibiting cerebral damage induced by ischemia reperfusion. The inhibitory effects of Remifentanil preconditioning on the brain damage are achieved probably through blocking the activation of TNF-α/TNFR1, JNK signal transduction pathways, which implies that Remifentanil preconditioning may be a potential and effective way for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TNF-α/TNFR1, JNK signal pathways. Taken together, this study indicated that regulation of the TNF-α/TNFR1 and JNK signal pathways may provide a new therapy for cerebral damage induced by ischemia and reperfusion.  相似文献   

6.
Fasudil hydrochloride (FH), a Rho kinase (ROCK) inhibitor, has been reported to prevent cerebral ischemia in vivo from increasing cerebral blood flow and inhibiting inflammatory responses. However, it is uncertain by what mechanism a ROCK inhibitor can directly protect neurons against ischemic damage. The present study was designed to evaluate whether FH decreased the increased phosphorylation of glutamate receptor 6 (GluR6) and its downstream in GluR6–MLK3–JNKs signal transduction pathway following global transient cerebral ischemia, as a result of protecting against neuronal apoptosis and death. Transient cerebral ischemia was induced by the Pulsinelli–Brierley four-vessel occlusion method. FH (15 mg/kg) was administered to rats by intraperitoneal injection 30 min before ischemia. The phosphorylation and protein expression of GluR6 at 6 h during reperfusion were detected using immunoprecipitation and immunoblotting analysis. The phosphorylation and protein expression of Mixed lineage kinase 3 (MLK3) at ischemia/reperfusion (I/R) 6 h and c-Jun N-terminal kinase (JNK) at I/R 3 d were detected using immunoblotting analysis, respectively. The same method was used to detect the expression of caspase-3 at I/R 6 h. Furthermore, we also use TUNEL staining and Cresyl violet staining to examine the survival neurons in rat hippocampal CA1 regions after 3 and 5 d reperfusion, respectively. Our study indicated that FH could inhibit the increased phosphorylation of GluR6 and MLK3 and the expression of caspase-3 at peaked 6 h of reperfusion and the phosphorylation of JNK (3 d) (p < 0.5). The results of TUNEL staining and Cresyl violet showed that the number of surviving pyramidal neurons in rats hippocampal CA1 subfield increased markedly in FH-treated rats compared with ischemic groups after 3 or 5 d of reperfusion following ischemia (p < 0.5). These results suggested that FH, as a ROCK inhibitor, may be partly responsible for its protective effects against such damage by taking part in GluR6-MLK3-JNKs signaling pathway which modulates ischemic damage. Taken together, this is the first study investigating Rho and ROCK as the upstream of GluR6 taking part in GluR6–MLK3–JNKs signal transduction pathway following cerebral ischemia.  相似文献   

7.
Stroke is the third leading cause of death world-wide, affecting 15 million people annually. Diminished blood supply to the brain cells is the main cause of damage following stroke. When focal ischemia occurs, the core of brain tissue influenced by reduced blood supply undergoes necrotic cell death. The adipocytokine Apelin is a peptide that was isolated from a bovine stomach for the first time. This peptide and its receptor are abundantly expressed in the nervous and cardiovascular systems. According to previous studies, Apelin-13 protects cardiomyocytes from ischemic injury and apoptosis. In addition, this peptide has neuroprotective effect on hippocampal and cultured mouse cortical neurons against NMDA receptor-mediated excitotoxicity as well as cortical neurons from ischemic injury. The present study was conducted to determine whether Apelin-13 inhibits apoptosis in the ischemic penumbra in transient focal cerebral ischemia. Focal cerebral ischemia was induced in male Wistar rats by 60 min middle cerebral artery occlusion (MCAO) using a filament method, followed by 23-h reperfusion. Saline as a vehicle and Apelin-13 at doses of 50 and 100 μg were injected intracerebro-ventriculary (ICV) at the beginning of ischemia. Apoptosis and neurological dysfunction were assessed 24-h after MCAO. Our results indicated that administration of Apelin-13 at doses of 50 and 100 μg ICV markedly reduced apoptosis by decreasing positive TUNEL cells (P < 0.001). In addition, Apelin-13 at doses of 100 μg significantly change neurological dysfunction (P < 0.05). Our findings demonstrate that treatment by Apelin-13 exerts its protective effects in ischemic models via blocking programmed cell-death. We suggest that Apelin-13 might be a promising therapeutic target for stroke, although more researches are necessary to take into account the potential therapeutic effects of Apelin-13 in stroke patients.  相似文献   

8.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Evodiamine (Evo) has been proved to elicit a variety of biological effects through its anti-inflammatory property in the treatment of infectious disease, Alzheimer’s disease and hypoxia-induced inflammatory response. Whether this protective effect applies to cerebral ischemic injury, we therefore investigated the potential neuroprotective role of Evo and the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were subjected to permanent middle cerebral artery occlusion (pMCAO) and randomly divided into five groups: Sham (sham-operated + 1 % DMSO + 0.5 % tween80), pMCAO (pMCAO + 0.9 % saline), Vehicle (pMCAO + 1 % DMSO + 0.5 % tween80), Evo-L (Vehicle + Evo 50 mg/kg) and Evo-H (Vehicle + Evo 100 mg/kg) groups. Evo was administered intragastrically twice daily for 3 days, and once again 30 min before mouse brain ischemia was induced by pMCAO. Neurological deficit, brain water content and infarct size were measured at 24 h after stroke. The expression of pAkt, pGSK3β, NF-κB and claudin-5 in ischemic cerebral cortex was analyzed by western blot and qRT-PCR. Compared with Vehicle group, Evo significantly ameliorated neurological deficit, brain water content and infarct size, upregulated the expression of pAkt, pGSK3β and claudin-5, and downregulated the nuclear accumulation of NF-κB (P < 0.05). Evo protected the brain from ischemic damage caused by pMCAO; this effect may be through upregulation of pAkt, pGSK3β and claudin-5, and downregulation of NF-κB expression.  相似文献   

9.
Galectin-1, an endogenous mammalian lectin, has been implicated in a variety of CNS disorders. However, its role in cerebral ischemia is still elusive. In the present study, we investigated the effect of recombinant galectin-1 on production of astrocytic brain-derived neurotrophic factor (BDNF) and functional recovery following ischemia. Endogenous galectin-1 was found to be markedly upregulated, paralleled with increased astrocytic BDNF production under ischemic conditions both in vitro and in vivo. Administration of galectin-1significantly enhanced the expression and secretion of astrocytic BDNF in dose dependent manner. Moreover, rats subjected to photochemical cerebral ischemia showed reduced neuronal apoptosis in ischemic boundary zone and improved functional recovery after brain infusion of galectin-1 (1 μg/days, 7 days). These results suggest that induction of BDNF in astrocytes by galectin-1 may be a promising intervention to attenuate brain damage after stroke.  相似文献   

10.
Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia.  相似文献   

11.
Aliskiren (ALK), a pharmacological renin inhibitor, is an effective antihypertensive drug and has potent anti-apoptotic activity, but it is currently unknown whether ALK is able to attenuate brain damage caused by acute cerebral ischemia independent of its blood pressure-lowering effects. This study aimed to investigate the role of ALK and its potential mechanism in cerebral ischemia. C57/BL6 mice were subjected to transient middle cerebral artery occlusion (tMCAO) and treated for 5 days with Vehicle or ALK (10 or 25 mg/kg per day via intragastric administration), whereas Sham-operated animals served as controls. Treatment with ALK significantly improved neurological deficits, infarct volume, brain water content and Nissl bodies after stroke (P < 0.05), which did not affect systemic blood pressure. Furthermore, the protection of ALK was also related to decreased levels of apoptosis in mice by enhanced activation of phosphatidylinositol 3-kinase (PI3K)/AKT pathway, increased level of Bcl-2 and reduced Bax expression (P < 0.05). In addition, ALK’s effects were reversed by PI3K inhibitors LY294002 (P < 0.05). Our data indicated that ALK protected the brain from reperfusion injuries without affecting blood pressure, and this effect may be through PI3K/AKT signaling pathway.  相似文献   

12.
Several reports have recently demonstrated a detrimental role of Toll-like receptors (TLR) in cerebral ischemia, while there is little information about the endogenous ligands which activate TLR-signaling. The myeloid related proteins-8 and-14 (Mrp8/S100A8; Mrp14/S100A9) have recently been characterized as endogenous TLR4-agonists, and thus may mediate TLR-activation in cerebral ischemia. Interestingly, not only TLR-mRNAs, but also Mrp8 and Mrp14 mRNA were found to be induced in mouse brain between 3 and 48 h after transient 1 h focal cerebral ischemia/reperfusion. Mrp-protein was expressed in the ischemic hemisphere, and co-labeled with CD11b-positive cells. To test the hypothesis that Mrp-signaling contributes to the postischemic brain damage, we subjected Mrp14-deficient mice, which also lack Mrp8 protein expression, to focal cerebral ischemia. Mrp14-deficient mice had significantly smaller lesion volumes when compared to wild-type littermates (130 ± 16 mm3 vs. 105 ± 28 mm3) at 2 days after transient focal cerebral ischemia (1 h), less brain swelling, and a reduced macrophage/microglia cell count in the ischemic hemisphere. We conclude that upregulation and signaling of Mrp-8 and-14 contribute to neuroinflammation and the progression of ischemic damage.  相似文献   

13.
14.
15.
The aim of this study was to investigate the effects of β-myrcene (MYR) on oxidative and histological damage in brain tissue caused by global cerebral ischemia/reperfusion (I/R) in C57BL/J6 mice. Mice (n = 40) were equally divided into four groups: (1) sham-operated (SH), (2) global cerebral I/R, (3) MYR, and (4) MYR + I/R. The SH group was used as a control and received 0.1 % carboxymethyl cellulose (CMC) as a vehicle following a medial incision without carotid occlusion. In the I/R group, the bilateral carotid arteries were clipped for 15 min, and treated with the vehicle intraperitoneally (i.p.) for 10 days. In the MYR group, mice were given 200 mg/kg MYR dissolved in 0.1 % CMC for 10 days following a medial incision without carotid occlusion. In the MYR + I/R group, the I/R procedure was performed exactly as in the I/R group, and they were then treated with the same dose of MYR for 10 days. Cerebral I/R induced oxidative stress via an increase in thiobarbituric acid reactive substances (TBARS) formation and a decrease in the antioxidant defense systems, including glutathione (GSH), catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). However, MYR treatment protected against the oxidative effects of I/R by inducing significant increases in GSH, GPx, and SOD and a significant decrease in the formation of TBARS. Additionally, cerebral I/R increased the incidence of histopathological damage and apoptosis in brain tissue, but these neurodegenerative effects were eliminated by MYR treatment. This study has demonstrated that MYR effectively attenuates oxidative and histological damage in the brain caused by global I/R. The beneficial effects of MYR probably contribute to its strong antioxidant and radical scavenging properties. In conclusion, MYR may be useful for the attenuation of the negative effects of global cerebral I/R and, in the future, may be a viable and safe alternative treatment for ischemic stroke in humans.  相似文献   

16.
Apoptosis and neural degeneration are characteristics of cerebral ischemia and brain damage. Diabetes is associated with worsening of brain damage following ischemic events. In this study, the authors characterize the influence of focal cerebral ischemia, induced by middle cerebral artery occlusion, on 2 indexes of apoptosis,TUNEL(terminal deoxynucleotidyl transferase–mediated deoxyuridine 5-triphosphate nick end-labeling) staining and caspase- 3 immunohistochemistry. Diabetes was induced in normal rats using streptozotocin and maintained for 5 to 6 weeks. The middle cerebral artery of both normal and diabetic rats was occluded and maintained from 24 or 48 hours. Sham-operated normal and diabetic animals served as controls. Following 24 to 48 hours of occlusion, the animals were sacrificed and the brains were removed, sectioned, and processed for TUNEL staining or caspase-3 immunohistochemistry. Middle cerebral artery occlusion in normal rats was associated with an increase in the number of both TUNEL-positive and caspase-3– positive cells in selected brain regions (hypothalamic preoptic area, piriform cortex, and parietal cortex) when compared to nonoccluded controls. Diabetic rats without occlusion showed significant increases in both TUNEL-positive and caspase-3–positive cells compared to normal controls. Middle cerebral artery occlusion in diabetic rats resulted in increases in TUNEL-positive as well as caspase-3–positive cells in selected regions, above those seen in nonoccluded diabetic rats. Both TUNEL staining and caspase-3 immunohistochemistry revealed that the number of apoptotic cells in diabetic animals tended to be greatest in the preoptic area and parietal cortex. The authors conclude that focal cerebral ischemia is associated with a significant increase in apoptosis in nondiabetic rats, and that diabetes alone or diabetes plus focal ischemia are associated with significant increases in apoptotic cells.  相似文献   

17.
Wen Y  Yang S  Liu R  Simpkins JW 《FEBS letters》2005,579(21):4591-4599
Recent evidence indicates that cell-cycle regulating proteins are involved in apoptotic process in post-mitotic neurons. In this study, we examined cell-cycle regulators for G1/S cell-cycle progression after a transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion. In the cerebral frontoparietal cortex, we observed a marked induction of Cyclin D1 (a coactivator of Cdks), and proliferating cell nuclear antigen (PCNA), together with upregulated Cdk kinase activities. This process is accompanied with multiple phosphorylation of retinoblastoma (Rb) protein at Cdk phosphorylation sites in neurons from the ischemic cortex. We further examined DNA synthesis by the incorporation of BrdU, a nucleotide analog that incorporates into newly synthesized DNA. Within 24-h of reperfusion after 60-min occlusion, substantial BrdU-positive neurons were observed in the ischemic cortex. Inhibition of Cdk4 activity during this ischemia/reperfusion is highly neuroprotective. These results suggest that ischemia/reperfusion cerebral damage induces signalings at the G1/S cell-cycle transition, and may constitute a critical step in the neuronal apoptotic pathway in ischemia/reperfusion induced neuronal damage.  相似文献   

18.
Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague–Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG’s influence on blood–brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.  相似文献   

19.
TNF-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily released by microglia, appears to be involved in the induction of apoptosis following focal brain ischemia. Indeed, brain ischemia is associated with progressive enlargement of damaged areas and prominent inflammation. As ischemic preconditioning reduces inflammatory response to brain ischemia and ameliorates brain damage, the purpose of the present study was to evaluate the role of TRAIL and its receptors in stroke and ischemic preconditioning and to propose, by modulating TRAIL pathway, a new therapeutic strategy in stroke. In order to achieve this aim a rat model of harmful focal ischemia, obtained by subjecting animals to 100 min of transient occlusion of middle cerebral artery followed by 24 h of reperfusion and a rat model of ischemic preconditioning in which the harmful ischemia was preceded by 30 mins of tMCAO, which represents the preconditioning protective stimulus, were used. Results show that the neuroprotection elicited by ischemic preconditioning occurs through both upregulation of TRAIL decoy receptors and downregulation of TRAIL itself and of its death receptors. As a counterproof, immunoneutralization of TRAIL in tMCAO animals resulted in significant restraint of tissue damage and in a marked functional recovery. Our data shed new light on the mechanisms that propagate ongoing neuronal damage after ischemia in the adult mammalian brain and provide new molecular targets for therapeutic intervention. Strategies aimed to repress the death-inducing ligands TRAIL, to antagonize the death receptors, or to activate the decoy receptors open new perspectives for the treatment of stroke.Stroke is a leading cause of death in industrialized countries1 and the most frequent cause of disability in adults.2 Although different mechanisms are involved in the pathogenesis of stroke, increasing evidence shows that ischemic injury and subsequent inflammation are responsible for damage progression,3 characterized by irreversible neuronal damage within minutes of the onset.In the past 30 years, it has been demonstrated that the brain''s resistance to ischemic injury can be transiently augmented by previous exposure to a non-injurious preconditioning (PC) stimulus.4 Evidence demonstrates that PC inhibits apoptosis in the penumbra region, thus preventing the spread of infarction. In addition, PC-induced neuroprotection appears related to a persistent activation of survival kinases in the penumbra.5 PC seems recognized by sensor molecules, such as neurotransmitters, cytokines, and others, as a sign of an event potentially more severe to come.6 In particular, inflammatory cytokines, beside representing PC sensor molecules, have a relevant role in acute stroke. For instance, tumor necrosis factor-α (TNF-α) and IL-1 mediate the inflammatory/immune response related to progression of the ischemic lesion.7 In the brain, cytokines are expressed not only in systemic immunocytes but also in resident cells, including neurons and glia.8 In particular, microglia have a key role as immune-competent cells of the CNS. Recruitment of leukocytes from the blood stream and activation of microglia are thought to contribute to the extension of the infarct core into the surrounding penumbra.5 Substantial evidence demonstrates that ischemia-activated microglia releases several pro-inflammatory cytokines, as well as other potentially cytotoxic molecules, including NO, ROS, and eicosanoids.9 Such a large arsenal of cytotoxic molecules appear to be involved in the induction of neuronal death.TNF-related apoptosis inducing ligand (TRAIL), a proapoptotic member of the TNF superfamily released by glia10, 11 and injured neurons,12 appears to trigger apoptosis following focal brain ischemia.13 TRAIL binds five receptors, death receptor-4 (DR4), DR5, decoy receptor 1 (DcR1), DcR2, and osteoprogeterin. Although DR4 and DR5 receptors contain an intracellular death domain related to the apoptotic pathway, DcR1 and DcR2 serve as decoy receptors,14 eventually buffering death receptors'' binding of TRAIL, thus preventing apoptosis.15, 16Although recent work attempted to establish a relationship between TRAIL pathway and brain ischemia,17, 18 only scant data are available on the role of TRAIL and its receptors in focal ischemia,19 and no data are known on the role of TRAIL in brain PC-induced neuroprotection.In the present study, we evaluated the role of TRAIL and its receptors in stroke and ischemic PC and verified the hypothesis of a potential mode for therapeutic intervention in stroke, by administrating a specific anti-TRAIL antibody in rats subjected to transient middle cerebral artery occlusion (tMCAO).  相似文献   

20.
Nicotine has been reported to exert certain protective effect in the Parkinson’s and Alzheimer’s diseases. Whether it has a similar action in focal cerebral ischemia was unclear. In the present study, rats received either an injection of (?)-nicotine hydrogen tartrate salt (1.2 mg/kg, i.p.) or the vehicle 2 h before the 120 min middle cerebral artery occlusion. Neurological deficits and histological injury were assessed at 24 h after reperfusion. The content of endocannabinoids and the expression of cannabinoid receptor CB1 in brain tissues were determined at different time points after nicotine administration. Results showed that nicotine administration ameliorated neurological deficits and reduced infarct volume induced by cerebral ischemia in the rats. The neuroprotective effect was partially reversed by CB1 blockage. The content of the endocannabinoids N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as the expression of cannabinoid receptor CB1 were up-regulated in brain tissues after nicotine delivery. These results suggest that endogenous cannabinoid system is involved in the nicotine-induced neuroprotection against transient focal cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号