首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   

2.
3.
4.
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.  相似文献   

5.
6.
Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.  相似文献   

7.
Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface. Analysis by scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the addition of 3-MPTMS resulted in an alternation of the chemical characteristics of the solution. Atomic force microscopy imaging supported the notion that silicon surface modification is the most important factor on tribological properties of materials along with ligand-modified Au NPs. The density of Au NPs on a silicon surface was significantly dependent on several factors, including the concentration of colloidal Au NPs, deposition time, and concentration of 3-MPTMS solution, while temperature range which was used throughout experiment was determined to have no significant effect. A relatively high density of Au NPs forms on the silicon surface as the concentrations of Au NPs and 3-MPTMS are increased. In addition, the maximum deposition of Au NPs on silicon wafer was observed at 3 h, while the effects of temperature variation were minimal.  相似文献   

8.
9.
Transient receptor potential vanilloid type 4 (TRPV4) channels are expressed in the central nervous system, but their role in regulating the aging process under physiological and pathological conditions is still largely unknown. To identify age-related changes in the TRPV4 channel that contribute to the central nervous system, we investigated the distribution of TRPV4 in the brain and spinal cord regions of adult and aged rats. The expression of TRPV4 in the brain and spinal cord of adult and aged Sprague–Dawley rats was compared using immunohistochemistry performed with antibodies recognizing TRPV4 on free floating sections and western blotting analysis. TRPV4 immunoreactivity was significantly increased in the cerebral cortex, hippocampal formation, thalamus, basal nuclei, cerebellum and spinal cord of aged rats compared with adult control rats. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of aged rats. In addition, TRPV4 immunoreactivity was increased in the spinal cord, hippocampal formation, thalamus, basal nuclei and cerebellum of aged rats. This first demonstration of age-related increases in TRPV4 expression in the brain and spinal cord may provide useful data for investigating the pathogenesis of age-related neurodegenerative diseases. The exact regulatory mechanism and its functional significance require further elucidation.  相似文献   

10.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and accumulation of the abnormal form of the scrapie prion protein (PrP). Rutin is a flavonoid that occurs naturally in plant-derived beverages and foods and is used in traditional and folkloric medicine worldwide. In the present study, we evaluated the protective effects of rutin against PrP fragment (106–126)-induced neuronal cell death. Rutin treatment blocked PrP(106–126)-mediated increases in reactive oxygen species production and nitric oxide release and helped slowing the decrease of neurotrophic factors that results from PrP accumulation. Rutin attenuated PrP(106–126)-associated mitochondrial apoptotic events by inhibiting mitochondrial permeability transition and caspase-3 activity and blocking expression of the apoptotic signals Bax and PARP. Additionally, rutin treatment significantly decreased the expression of the death receptor Fas and its ligand Fas-L. Overall, our results demonstrated that rutin protects against the neurodegenerative effects of prion accumulation by increasing production of neurotropic factors and inhibiting apoptotic pathway activation in neuronal cells. These results suggested that rutin may have clinical benefits for prion diseases and other neurodegenerative disorders.  相似文献   

11.
As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.  相似文献   

12.
13.
N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1–NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.  相似文献   

14.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and its prevalence is rising. In the absence of disease progression, fatty liver poses minimal risk of detrimental health outcomes. However, advancement to non-alcoholic steatohepatitis (NASH) confers a markedly increased likelihood of developing severe liver pathologies, including fibrosis, cirrhosis, organ failure, and cancer. Although a substantial percentage of NAFLD patients develop NASH, the genetic and molecular mechanisms driving this progression are poorly understood, making it difficult to predict which patients will ultimately develop advanced liver disease. Deficiencies in mechanistic understanding preclude the identification of beneficial prognostic indicators and the development of effective therapies. Mouse models of progressive NAFLD serve as a complementary approach to the direct analysis of human patients. By providing an easily manipulated experimental system that can be rigorously controlled, they facilitate an improved understanding of disease development and progression. In this review, we discuss genetically- and chemically-induced models of NAFLD that progress to NASH, fibrosis, and liver cancer in the context of the major signaling pathways whose disruption has been implicated as a driving force for their development. Additionally, an overview of nutritional models of progressive NAFLD is provided.  相似文献   

15.
The urokinase-type plasminogen activator receptor (uPAR) serves not only as an anchor for urokinase-type plasminogen activator but also participates in intracellular signal transduction events. In this study, we investigated whether uPAR could modulate TRAIL-induced apoptosis in human colon cancer cells HCT116. Using an antisense strategy, we established a stable HCT116 cell line with down-regulated uPAR. The sensitivity to TRAIL-induced apoptosis was evaluated by FACS analysis. Our results show that the inhibition of uPAR could sensitize HCT116 to TRAIL-induced apoptosis. uPAR inhibition changed the expression of mitochondrial apoptotic pathway proteins, including Bcl-2, Bax, Bid and p53, in a pro-apoptotic manner. We also found that the inhibition of uPAR down-regulated the phosphorylation of FAK, ERK and JNK. The inhibition of p53 by RNA interference rescued cells from enhanced apoptosis, thus indicating that p53 is critical for enhancing TRAIL-induced apoptosis. Furthermore, JNK, but not ERK, inhibition involved in the up-regulation of p53. JNK negatively regulated p53 protein level. Overall, our results show that uPAR inhibition can sensitize colon cancer cells HCT116 to TRAIL-induced apoptosis via active p53 and mitochondrial apoptotic pathways that JNK inhibition is involved.  相似文献   

16.
Twenty varieties of maize (Zea mays, Poaceae) were studied through 11 attributes in three to seven randomly selected plants of each variety with a view to understanding the effect of cob characters on technologically desirable grain qualities. Canonical discriminant analysis showed thatproductivity (determined by total grain weight/cob, cob diameter and average grain weight) was the most discriminating among varieties followed by round grains fraction (represented by whole top and middle flat grains, number of rows and grain count/surface area), middle flat grains (composed of middle flat grains and grain count/surface area) and shape of the cob (determined by shape index, total grain weight/cob and cob diameter), which accounted for 35.1, 18.3, 12.2, and 9.8% of the total variance, respectively. In the light of these results, tentative norms have been suggested to evolve maize varieties of superior technological properties and yet retain high productivity. A cylindrical cob of large diameter with highest number of grains/area and smallest possible number of rows together constituted an ideal combination to achieve the objectives. Such possibilities in the light of available information are discussed.  相似文献   

17.
Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague–Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG’s influence on blood–brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.  相似文献   

18.
Au nanorod (Au NR) is one of the most studied colloidal nanostructures for its tunable longitudinal surface plasmon resonance (SPRL) property in the near infrared region. And surface coating Au NRs into core-shell nanostructures is particularly important for further investigation and possible applications. In this paper, Au NRs colloids were synthesized using an improved seed method. Then as-prepared Au NRs were coated with SiO2 to form a core-shell nanostructure (Au@SiO2) with different shell thickness. And the influence of SiO2 shell on the SPRL of Au NRs was investigated based on the experimental results and FDTD simulations. Under the 808 nm laser irradiating, the stability of Au@SiO2 was studied. Compared with Au NRs, the Au@SiO2 is stable with increasing laser power (up to 8 W), whereas Au NRs undergo a shape deformation from rod to spherical nanoparticle when the laser power is 5 W. The high stability and tunable optical properties of core-shell structured Au@SiO2, along with advantages of SiO2, show that Au@SiO2 composites are promising in designing plasmonic photothermal properties or further applications in nanomedicine.  相似文献   

19.
20.
Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinson’s disease. Carvedilol, a nonselective β-adrenergic receptor blocker with pleiotropic activity has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. The phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway plays key role in cell survival and the nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is the major cellular defense mechanism against oxidative stress. Here we investigated the effects of carvedilol on 6-hydroxydopamine (6-OHDA)-induced cell death as well as the Akt and Nrf2/ARE pathways in PC12 cells. We found that carvedilol significantly increased cell viability and decreased reactive oxygen species in PC12 cells exposed to 6-OHDA. Furthermore, carvedilol activated the Akt and Nrf2/ARE pathways in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. In summary, our results indicate that carvedilol protects PC12 cells against 6-OHDA-induced neurotoxicity possibly through activating the Akt and Nrf2/ARE signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号