首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

2.
Liu  QiongHua  Wu  JianE  Lai  ShangShu  Li  Gan 《Neurochemical research》2022,47(7):2064-2075
Neurochemical Research - Ischemic stroke is a grievous intimidation to the healthiness of sufferers. Previous studies have reported that dexmedetomidine (DEX) has a protective effect on a variety...  相似文献   

3.
Recently, it has been suggested that molecular hydrogen (H2) can selectively reduce the levels of hydroxyl radicals (.OH), and ameliorate oxidative and inflammatory injuries to organs in global cerebral ischemia reperfusion models. Global cerebral ischemia/reperfusion (I/R) can induce a sudden activation of inflammatory cytokines and later influence the systemic immunoreactivity which may contribute to a worse outcome. Regulatory T cells (Tregs) are involved in several pathological aspects of cerebral I/R. In addition, miRNA took part in the processes of cellular response to hypoxia. Since the expression of a specific set of miRNA called “hypoxamirs” is upregulated by hypoxia. Therefore, the aim of this study was to analyze the effect of HRS on I/R inducing cerebral damage, Tregs, and specific miRNA. Our results showed that rats undergone global cerebral I/R and treated with HRS have milder injury than I/R animals without HRS treatment. miR-210 expression in the hippocampus of the I/R group at 6, 24 and 96 h after reperfusion was significantly increased at each time point, while its expression in the group treated with HRS was significantly decreased. In addition, Tregs number in group I/R was decreased at each time points, while its number in the group treated with HRS was increased at 24 and 96 h after reperfusion. We focus on the relationship among Tregs, TGF-β1, TNF-α and NF-κB at 24 h, and we found that there is a high correlation among them. Therefore, our results indicated that the brain resuscitation mechanism in the HRS-treated rats may be related with the effect of upregulating the number of Treg cells.  相似文献   

4.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Evodiamine (Evo) has been proved to elicit a variety of biological effects through its anti-inflammatory property in the treatment of infectious disease, Alzheimer’s disease and hypoxia-induced inflammatory response. Whether this protective effect applies to cerebral ischemic injury, we therefore investigated the potential neuroprotective role of Evo and the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were subjected to permanent middle cerebral artery occlusion (pMCAO) and randomly divided into five groups: Sham (sham-operated + 1 % DMSO + 0.5 % tween80), pMCAO (pMCAO + 0.9 % saline), Vehicle (pMCAO + 1 % DMSO + 0.5 % tween80), Evo-L (Vehicle + Evo 50 mg/kg) and Evo-H (Vehicle + Evo 100 mg/kg) groups. Evo was administered intragastrically twice daily for 3 days, and once again 30 min before mouse brain ischemia was induced by pMCAO. Neurological deficit, brain water content and infarct size were measured at 24 h after stroke. The expression of pAkt, pGSK3β, NF-κB and claudin-5 in ischemic cerebral cortex was analyzed by western blot and qRT-PCR. Compared with Vehicle group, Evo significantly ameliorated neurological deficit, brain water content and infarct size, upregulated the expression of pAkt, pGSK3β and claudin-5, and downregulated the nuclear accumulation of NF-κB (P < 0.05). Evo protected the brain from ischemic damage caused by pMCAO; this effect may be through upregulation of pAkt, pGSK3β and claudin-5, and downregulation of NF-κB expression.  相似文献   

5.
Deng  Ling  Guo  Yi  Liu  Jingdong  Wang  Xuan  Chen  Sha  Wang  Qian  Rao  Jianyan  Wang  Yuchun  Zuo  Tianrui  Hu  Qingwen  Zhao  Xiahong  Dong  Zhi 《Neurochemical research》2021,46(7):1801-1813
Neurochemical Research - This study was designed to investigate the role of miR-671-5p in in vitro and in vivo models of ischemic stroke (IS). Middle cerebral artery occlusion and reperfusion...  相似文献   

6.
7.
Methotrexate (MTX) is a pro-oxidant compound that depletes dihydrofolate pools and is widely used in the treatment of leukaemia and other malignancies. The efficacy of methotrexate is often limited by mucositis and intestinal injury, which are major causes of morbidity in children and adults. The aim of this study was to evaluate the effect of olmesartan (OLM), an angiotensin II receptor antagonist, on an Intestinal Mucositis Model (IMM) induced by MTX in Wistar rats. IMM was induced via intraperitoneal (i.p.) administration of MTX (7 mg/kg) for three consecutive days. The animals were pre-treated with oral OLM at 0.5, 1 or 5 mg/kg or with vehicle 30 min prior to exposure to MTX. Small intestinal homogenates were assayed for levels of the IL-1β, IL-10 and TNF-α cytokines, malondialdehyde and myeloperoxidase activity. Additionally, immunohistochemical analyses of MMP-2, MMP-9, COX-2, RANK/RANKL and SOCS-1 and confocal microscopy analysis of SOCS-1 expression were performed. Treatment with MTX + OLM (5 mg/kg) resulted in a reduction of mucosal inflammatory infiltration, ulcerations, vasodilatation and haemorrhagic areas (p<0.05) as well as reduced concentrations of MPO (p<0.001) and the pro-inflammatory cytokines IL-1β (p<0.001) and TNF-a (p<0.01), and increase anti-inflammatory cytocine IL-10 (p<0.05). Additionally, the combined treatment reduced expression of MMP-2, MMP-9, COX-2, RANK and RANKL(p<0.05) and increased cytoplasmic expression of SOCS-1 (p<0.05). Our findings confirm the involvement of OLM in reducing the inflammatory response through increased immunosuppressive signalling in an IMM. We also suggest that the beneficial effect of olmesartan treatment is specifically exerted during the damage through blocking inflammatory cytocines.  相似文献   

8.
Nucleotide oligomerization domain 2(NOD2) is a major cytoplasmic sensor for pathogens and is critical for the clearance of cytosolic bacteria in mammals.However, studies regarding NOD2, especially the initiated signaling pathways, are scarce in teleost species. In this study, we identified a NOD2 molecule(PaNOD2) from ayu(Plecoglossus altivelis).Bioinformatics analysis showed the structure of NOD2 to be highly conserved during vertebrate evolution. Dual-luciferase reporter assays examined the activation of NF-κB signaling and Western blotting analysis detected the phosphorylation of three MAP kinases(p-38, Erk1/2, and JNK1/2).Functional study revealed that, like its mammalian counterparts, PaNOD2 was the receptor of the bacterial cell wall component muramyl dipeptide(MDP), and the leucine-rich repeat motif was responsible for the recognition and binding of Pa NOD2 with the ligand. Overexpression of PaNOD2 activated the NF-κB signaling pathway, leading to the upregulation of inflammatory cytokines, including TNF-α and IL-1β in HEK293 T cells and ayu head kidney-derived monocytes/macrophages(MO/MΦ).Particularly, we found that PaNOD2 activated the MAPK signaling pathways, as indicated by the increased phosphorylation of p-38, Erk1/2, and JNK1/2, which have not been characterized in any teleost species previously. Our findings proved that the NOD2 molecule and initiated pathways are conserved between mammals and ayu. Therefore, ayu could be used as an animal model to investigate NOD2-based diseases and therapeutic applications.  相似文献   

9.
Multi-protein complexes, termed “inflammasomes,” are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1β and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.  相似文献   

10.
Our aim was to evaluate the association between the expression and the polymorphism of TLR4/NF-κB pathways and colon cancer. TLR4 (rs4986790, rs10759932, rs10759931 and rs2770150) were genotyped in blood samples from Colorectal patients and healthy controls. TLR4 and cytokines inflammatory expression were evaluated by real time PCR on 40 matching normal and colon tissues and the protein level by Immunohistochemistry. The high level of TLR4 expression in colon cancer tissues is mainly due to infections by bacteria in the human colon and leads to induction of an acute secretion of inflammatory cytokines mediated by NF-κB. Also, we report here a clear evidence for an association between TLR4 rs10759931 polymorphism (OR = 0.086, CI: 0.04–0.18, P = <0.00001). This polymorphism affects the entire population without being specific to either gender or to any age group. In contrast, the rs2770150 is associated with colon cancer in women aged over 50 years and is closely linked with the decreased levels of female sex hormones during the post-menopausal period (OR = 0.188, CI: 0.074–0.48, P = <0.00084). rs10759932 and rs4986790 appear to have any association with colon cancer. Our data suggest that TLR4 SNPs could possibly serve as biomarkers for decision making in colon cancer treatment.  相似文献   

11.
12.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

13.
The β2 adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled β2-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients.The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that β-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activity by reducing levels of both phosphorylated-IKK and -IκBα, thereby decreasing NF-κB nuclear translocation and the expression of MMP-9, an NF-κB target gene. Subsequently, we show that indacaterol significantly inhibits TNF-α/NF-κB-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-κB activity in a β-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.  相似文献   

14.
Huang GJ  Huang SS  Deng JS 《PloS one》2012,7(5):e35922
Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr)-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide (NO) production, and the inducible nitric oxide synthase (iNOS) expression. Inotilone was tested in the inhibitor of mitogen-activated protein kinase (MAPK)?[extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), p38], and nuclear factor-κB (NF-κB), matrix-metalloproteinase (MMP)-9 protein expressions in LPS-stimulated RAW264.7 cells. When RAW264.7 macrophages were treated with inotilone together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that inotilone blocked the protein expression of iNOS, NF-κB, and MMP-9 in LPS-stimulated RAW264.7 macrophages, significantly. Inotilone also inhibited LPS-induced ERK, JNK, and p38 phosphorylation. In in vivo tests, inotilone decreased the paw edema at the 4(th) and the 5(th) h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). We also demonstrated that inotilone significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5(th) h after Carr injection. Inotilone decreased the NO and tumor necrosis factor (TNF-α) levels on serum at the 5(th) h after Carr injection. Western blotting revealed that inotilone decreased Carr-induced iNOS, cyclooxygenase-2 (COX-2), NF-κB, and MMP-9 expressions at the 5(th) h in the edema paw. An intraperitoneal (i.p.) injection treatment with inotilone diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo). The anti-inflammatory activities of inotilone might be related to decrease the levels of MDA, iNOS, COX-2, NF-κB, and MMP-9 and increase the activities of CAT, SOD, and GPx in the paw edema through the suppression of TNF-α and NO. This study presents the potential utilization of inotilone, as a lead for the development of anti-inflammatory drugs.  相似文献   

15.
Shi  Ziqi  Guan  Naiyu  Sun  Weijiao  Sun  Tianzhi  Niu  Lingdi  Li  Jinyu  Ge  Junwei 《Probiotics and antimicrobial proteins》2022,14(5):830-844
Probiotics and Antimicrobial Proteins - Although the use of the probiotic bacterium Lactobacillus for the treatment and prevention of diseases caused by various pathogenic bacteria has received...  相似文献   

16.
The novel biological effect of statins in alleviating myocardium fibrosis following infarction has been increasingly recognized, yet the underlying mechanisms are not fully understood. The purpose of this study was to characterize the effect of simvastatin on myocardial fibrosis and collagen I deposition in the non-infarcted region after myocardial infarction (MI) and to identify the role of NF-κB and osteopontin in simvastatin-mediated inhibition of post-MI collagen over-expression. A rat model of MI was generated by ligating the left anterior descending coronary artery. The rats surviving the MI operation were randomly divided into the following 3 groups: myocardial infarction (MI, vehicle), simvastatin (Sim, 30 mg·kg-1·day-1), and pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB, 100 mg·kg-1·day-1). Four weeks after MI, cardiac function, mRNAs, and protein expression in non-infarcted myocardium were analyzed. Myocardial fibrosis and collagen I over-expression were observed following MI, accompanied by an increase of NF-κB and osteopontin. Simvastatin improved post-MI left ventricular dysfunction and ameliorated post-MI associated changes to several cardiac parameters, including the left ventricular end diastolic pressure (LVEDP), the maximal rate of pressure development (+dP/dtmax), and the maximal rate of pressure decline (-dP/dtmax). Concurrently, simvastatin significantly suppressed the over-expression of NF-κB, osteopontin, and collagen I in the non-infarcted region following MI. Inhibition of NF-κB by PDTC also reduced osteopontin over-expression and excessive collagen I production and improved the above functional myocardial parameters. These results show that post-MI myocardial fibrosis and collagen I over-expression in the non-infarcted region is associated with activation of NF-κB and osteopontin up-regulation. The anti-fibrotic effect of simvastatin following MI is associated with the attenuation of the expression of osteopontin and NF-κB. The inhibition of NF-κB activation could be the process upstream of osteopontin suppression in the simvastatin-mediated effect.  相似文献   

17.
The role of IκB kinase (IKK)-induced proteolysis of NF-κB1 p105 in innate immune signaling was investigated using macrophages from Nfkb1(SSAA/SSAA) mice, in which the IKK target serines on p105 are mutated to alanines. We found that the IKK/p105 signaling pathway was essential for TPL-2 kinase activation of extracellular signal-regulated kinase (ERK) mitogen-activate protein (MAP) kinase and modulated the activation of NF-κB. The Nfkb1(SSAA) mutation prevented the agonist-induced release of TPL-2 from its inhibitor p105, which blocked activation of ERK by lipopolysaccharide (LPS), tumor necrosis factor (TNF), CpG, tripalmitoyl-Cys-Ser-Lys (Pam(3)CSK), poly(I · C), flagellin, and R848. The Nfkb1(SSAA) mutation also prevented LPS-induced processing of p105 to p50 and reduced p50 levels, in addition to decreasing the nuclear translocation of RelA and cRel. Reduced p50 in Nfkb1(SSAA/SSAA) macrophages significantly decreased LPS induction of the IκBζ-regulated Il6 and Csf2 genes. LPS upregulation of Il12a and Il12b mRNAs was also impaired although specific blockade of TPL-2 signaling increased expression of these genes at late time points. Activation of TPL-2/ERK signaling by IKK-induced p105 proteolysis, therefore, induced a negative feedback loop to downregulate NF-κB-dependent expression of the proinflammatory cytokine interleukin-12 (IL-12). Unexpectedly, TPL-2 promoted soluble TNF production independently of IKK-induced p105 phosphorylation and its ability to activate ERK, which has important implications for the development of anti-inflammatory drugs targeting TPL-2.  相似文献   

18.
19.
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.  相似文献   

20.
SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号