首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mitochondrial nucleoid is a compact structure composed of DNA and protein. By fluorescence microscopy, decondensation of the nucleoids was observed when yeast and tobacco mitochondria were osmotically lysed and subjected to an electric field. Structures stained with ethidium bromide were seen moving toward either the anode or the cathode. Since the movement of deproteinized DNA is toward the anode, the structures moving toward the cathode represent DNA-protein complexes with a net positive charge. Nucleoid decondensation and unfolding of the DNA probably resulted from the removal of weakly bound proteins; yet high-affinity basic proteins were evidently retained yielding cationic DNA-protein structures. Some of the positively charged structures were observed to break, presumably at single-stranded DNA regions, releasing negatively charged particles. The DNA-protein structures were complex branching forms larger than the unit genome, suggesting that multigenomic, concatemeric DNA is present within the mitochondria.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EtBr ethidium bromide - HMG high-mobility group - mt-genome mitochondrial genome - mt-nucleoid mitochondrial nucleoid - PFGE pulsed-field gel electrophoresis - pt-nucleoid plastid nucleoid - ssDNA single-stranded DNA  相似文献   

2.
Summary Ornithine decarboxylase (ODC) ofThermus thermophilus is associated with the nucleoid protein fraction. Analysis of this fraction by agarose gel electrophoresis and immunostaining revealed that ODC was bound to two groups of RNA-protein complexes. These two complexes of 1.5 and 0.6 kb in size disappeared from the gel by RNase A treatment or migrated to small molecular weight complexes by proteinase K treatment. Phenol extraction of either the nucleoid fraction or the eluted RNA-protein complexes from the agarose gel, shows that both contain the 0.56kb RNA. Both RNA-protein complexes contain the ODC protein (55 kDa) but their protein composition differs in at least six proteins. Extraction of the nucleoid fraction with H2SO4, indicates that ODC was present in the acid-soluble fraction, showing that it is a non-histone protein tightly bound to 0.56kb RNA. The purified ODC by various columns (140-fold), is close to homogeneity and still carries the 0.56kb RNA further explaining all the difficulties in the purification of this enzyme.  相似文献   

3.
P. Hansmann  H. Falk  K. Ronai  P. Sitte 《Planta》1985,164(4):459-472
The size, frequency and distribution of the nucleoids of chloroplasts (cl-nucleoids) and chromoplasts (cr-nucleoids) of the daffodil have been investigated in situ using the DNA-specific fluorochrome 46-diamidino-2-phenylindole. Chromoplasts contain fewer nucleoids (approx. 4) than chloroplasts (> 10), and larger chromoplasts (cultivated form, approx. 4) contain more than smaller ones (wild type, approx. 2). During chromoplast development the nucleoid number decreases in parallel with the chlorophyll content. Each nucleoid contains 2–3 plastome copies on average. In chloroplasts the nucleoids are evenly distributed, whereas they are peripherally located in chromoplasts. The fine structure of isolated cl-and cr-nucleoids, purified either by Sepharose 4B-CL columns or by metrizamide gradients, was investigated electron microscopically. The cl-nucleoids consist of a central protein-rich core with naked DNA-loops protruding from it. In cr-nucleoids, on the other hand, the total DNA is tightly packed within the proteinaceous core. The protein-containing core region of the nucleoids is made up of knotty and fibrillar sub-structures with diameters of 18 and 37 nm, respectively. After proteinase treatment, or incressing ion concentration, most of the proteins are removed and the DNA is exposed even in the case of cr-nucleoids, the stability of which proved to be greater than that of cl-nucleoids. The chemical composition of isolated plastid nucleoids has been determined qualitatively and quantitatively. Chromoplast-nucleoids contain, relative to the same DNA quantity, about six times as much protein as cl-nucleoids. Accordingly the buoyant density of cr-nucleoids in metrizamide gradients is higher than that of cl-nucleoids. In addition to DNA and protein, RNA could be found in the nucleoid fraction. No pigments were present. The cr-and cl-nucleoids have many identical proteins. There are, however, also characteristic differences in their protein pattern which are possibly related to the different expression of the genomes of chloroplasts and chromoplasts. Nucleoids of both plastid types contain some proteins which also occur in isolated envelope membranes (probably partly in the outer membrane) and thus possibly take part in binding the DNA to membranes.Abbreviations cl- chloroplast - cr- chromoplast - DAPI 46-diamidino-2-phenylindole - DNase deoxyribonuclease - kDa kilodaltons - MG purified by metrizamide gradients - SC purified by Sepharose CL-4B column gel filtration - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

4.
Abf2p, a mitochondrial DNA-binding protein of yeast Saccharomyces cerevisiae, was selectively detected among mitochondrial nucleoid proteins by SDS-DNA polyacrylamide gel electrophoresis (SDS-DNA PAGE) followed by ethidium bromide staining. This method is simple and specific for the detection of Abf2p, and it may be used to identify an Abf2p-like protein that is present in mitochondrial nucleoids from other yeasts.  相似文献   

5.
DNA of acidothermophilic archaebacterium Sulfolobus acidocaldarius has a base composition of about 40 mol% G + C content. A low intracellular salt concentration has been inferred for this organism. These features and the high optimal temperature of growth (75°C) would have a destabilising effect on the helical structure of the intracellular DNA. Hence, the nucleoid of this organism has been isolated in order to analyse its proteins composition and to identify any protein factors responsible for stabilisation of the organism's DNA at its growth temperature. The acid-soluble fraction of the nucleoid contains four low-molecular-weight basic proteins. The four proteins have been purified to homogeneity and antibodies to these proteins have been raised in rabbits. Immunodiffusion results suggest that the proteins are antigenically distinct. Three proteins (A, C and C′) stabilise different double-stranded DNA during thermal denaturation and increase Tm of DNA by about 25 C°. These proteins are referred to as helix-stabilising nucleoid proteins (HSNP). Protein B (referred to a DNA-binding nucleoid protein, DBNP-B) does not show helix-stabilising effect. None of the four proteins stabilises double-stranded RNA. The four proteins bind to native and denatured DNA to different extents as measured by DNA-cellulose chromatography and [3H]DNA binding by filtration. We suggest, based on the DNA binding, histone-like and helix-stabilising properties, that the intracellular function of these proteins is to prevent strand separation of DNA at the optimal temperature of growth (75°C).  相似文献   

6.
Nucleoids were purified from chloroplasts of dividing soybean cells and their polypeptide composition analyzed by SDS-polyacrylamide gel electrophoresis. Of the 15–20 nucleoid-associated polypeptides, several demonstrated DNA binding activity. Upon disruption of the nucleoids with high concentrations of NaCl, a subset of these proteins and the majority of chloroplast DNA were recovered in the supernatant after centrifugation. Removal of the salt by dialysis resulted in formation of nucleoprotein complexes resembling genuine nucleoids. Purification of these structures revealed three major proteins of 68, 35 and 18 kDa. After purification of the 68 kDa protein to homogeneity, this protein was able to compact purified chloroplast DNA into a nucleoid-like structure in a protein concentration-dependent fashion. Addition of the 68 kDa protein to an in vitro chloroplast DNA replication system resulted in complete inhibition of nucleotide incorporation at concentrations above 300 ng of 68 kDa protein per g of template DNA. These results led to in situ immunofluorescence studies of chloroplasts replicating DNA which suggested that newly synthesized DNA is not co-localized with nucleoids. Presumably, either the plastid replication machinery has means of removing nucleoid proteins prior to replication or the concentration of nucleoid proteins is tightly regulated and the proteins turned over in order to allow replication to proceed.  相似文献   

7.
Electron microscopic images of mitochondrial nucleoids isolated from mung bean seedlings revealed a relatively homogeneous population of particles, each consisting of a chromatin-like structure associated with a membrane component. Association of F-actin with mitochondrial nucleoids was also observed. The mitochondrial nucleoid structure identified in situ showed heterogeneous genomic organization. After pulsed-field gel electrophoresis (PFGE), a large proportion of the mitochondrial nucleoid DNA remained in the well, whereas the rest migrated as a 50–200 kb smear zone. This PFGE migration pattern was not affected by high salt, topoisomerase I or latrunculin B treatments; however, the mobility of a fraction of the fastmoving DNA decreased conspicuously following an in-gel ethidium-enhanced UV-irradiation treatment, suggesting that molecules with intricately compact structures were present in the 50-200 kb region. Approximately 70% of the mitochondrial nucleoid DNA molecules examined via electron microscopy were open circles, supercoils, complex forms, and linear molecules with interspersed sigma-shaped structures and/or loops. Increased sensitivity of mtDNA to DNase I was found after mitochondrial nucleoids were pretreated with high salt. This result indicates that some loosely bound or peripheral DNA binding proteins protected the mtDNA from DNase I degradation.  相似文献   

8.
A large amount of nucleoids could be isolated from mitochondria of the slime mold Physarum polycephalum by treating the mitochondria successively with Triton X-100 and Nonidet P-40 followed by centrifugation. The preparation retained the ultra-structure characteristics of the intact mitochondrial nucleoid. The population of proteins extracted from the nucleoid preparation was analysed by polyacrylamide gel electrophoresis. The result indicated presence of at least one species of basic protein.  相似文献   

9.
It has been suggested in a number of investigations that the high vulnerability of mitochondrial DNA to reactive oxygen species and other damaging agents is due to the absence in mitochondria of histones complexed with DNA. In the present study it was shown that DNA-binding proteins of mitochondrial nucleoids were able to shield mitochondrial DNA from X-ray radiation and hydrogen peroxide, as nuclear histones did. Mitochondria, mitochondrial nucleoid proteins, and histones were isolated from mouse liver cells. The degree of damage to or protection of mitochondrial DNA was assessed from the yield of its PCR amplification product. The in vitro experiments demonstrated that mouse mitochondrial DNA, when in complex with mitochondrial nucleoids or nuclear histones, was damaged much less by radiation and/or hydrogen peroxide than in the absence of these proteins and histones. No significant difference between mitochondrial nucleoid proteins and nuclear histones was revealed in their efficiency to protect mitochondrial DNA from the damaging effect of radiation and hydrogen peroxide. It is likely that the nucleoid proteins in the mitochondria shield mitochondrial DNA against the attack of reactive oxygen species, thus significantly decreasing the level of the oxidative damage to mitochondrial DNA.  相似文献   

10.
11.
Mitochondrial DNA/protein complexes (nucleoids) appear as discrete entities inside the mitochondrial network when observed by live-cell imaging and immunofluorescence. This somewhat trivial observation in recent years has spurred research towards isolation of these complexes and the identification of nucleoid-associated proteins. Here we show that whole cell formaldehyde crosslinking combined with affinity purification and tandem mass-spectrometry provides a simple and reproducible method to identify potential nucleoid associated proteins. The method avoids spurious mitochondrial isolation and subsequent multifarious nucleoid enrichment protocols and can be implemented to allow for label-free quantification (LFQ) by mass-spectrometry. Using expression of a Flag-tagged Twinkle helicase and appropriate controls we show that this method identifies many previously identified nucleoid associated proteins. Using LFQ to compare HEK293 cells with and without mtDNA, but both expressing Twinkle-FLAG, identifies many proteins that are reduced or absent in the absence of mtDNA. This set not only includes established mtDNA maintenance proteins but also many proteins involved in mitochondrial RNA metabolism and translation and therefore represents what can be considered an mtDNA gene expression proteome. Our data provides a very valuable resource for both basic mitochondrial researchers as well as clinical geneticists working to identify novel disease genes on the basis of exome sequence data.  相似文献   

12.
Mitochondrial (mt) nucleoids were isolated from yeast Kluyveromyces lactis with morphological intactness. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) revealed more than 20 proteins that are associated with the mt-nucleoids. However, the protein profile of the mt-nucleoids of K. lactis was significantly different from that of the mt-nucleoid proteins from Saccharomyces cerevisiae. SDS-DNA PAGE, which detected an Abf2p, a major mitochondrial DNA-binding protein, among the mt-nucleoid proteins of S. cerevisiae on a gel, detected only a 17-kDa protein in the K. lactis mt-nucleoid proteins. The 17-kDa protein was purified as homogeneous from the mt-nucleoids by a combination of acid extraction, hydroxyapatite chromatography and DNA-cellulose chromatography. The 17-kDa protein introduced a negative supercoil into circular plasmid DNA in the presence of topoisomerase I, as does S. cerevisiae Abf2p, and it packed K. lactis mtDNA into nucleoid-like particles in vitro. These results, together with the determination of the N-terminal amino acid sequence, suggested that the 17-kDa protein is an Abf2p homologue of K. lactis and plays structural roles in compacting mtDNA in cooperation with other nucleoid proteins.  相似文献   

13.
The RNA from the mitochondrial fraction of animal cells contains a polyadenylic acid sequence, approximately 55 nucleotides in length, which migrates at about 4 S in gel electrophoresis and which is attached to high molecular weight RNA. The experiments reported here indicate that: (a) the 4 S poly(A) sequence is found only in the mitochondrial fraction; (b) the RNA containing 4 S poly(A) is located within structures (presumably mitochondria) which protect it from pancreatic ribonuclease; (c) no RNA containing the longer poly(A) of nuclear origin appears to be located in mitochondria; (d) the 4 S poly(A), but not the longer poly(A), is attached to RNA which hybridizes to mitochondrial DNA; and (e) this poly(A) sequence is located at the 3′ end of the RNA molecule.The poly(A)-containing RNA can be isolated by affinity to oligodeoxyribothymidylic acid cellulose and resolved into approximately eight distinct species by acrylamide gel electrophoresis. These may correspond to individual mitochondrial messenger RNA molecules.  相似文献   

14.
15.
小麦线粒体DNA的高效提取方法   总被引:15,自引:0,他引:15  
李文强  张改生  汪奎  牛娜  潘栋梁 《遗传》2007,29(6):771-775
以小麦黄化苗为材料, 通过简单差速离心、DNaseⅠ处理得到无核DNA杂质的线粒体, 用SDS和蛋白酶K裂解线粒体, 经酚/氯仿抽提除去蛋白, 并用RNase A消化而得到单纯线粒体DNA(mtDNA)。对所提取的mtDNA进行紫外吸收光度分析, A260/A280 平均为1.92, A260/A230 平均为2.09, 平均每克黄化苗可提取mtDNA 26.85 mg; 并对mtDNA进行琼脂糖凝胶电泳和RAPD扩增, 均得到清晰的电泳图谱。结果表明: 此提取方法得到的mtDNA, 不但产率高、结构完整, 而且能有效去除核DNA、RNA和蛋白质等杂质, 获得高质量的mtDNA用于PCR反应和各种遗传学分析。研究还发现, 通过调整线粒体裂解温度(先50℃裂解1 h, 再37℃裂解1 h), 亦可大幅度提高mtDNA的产率。  相似文献   

16.
17.
We describe here a fluorometric method of detection of proteins fractionated by electrophoresis in polyacrylamide-SDS gels. This method, using ethidium bromide as fluorescent dye, is performed within 40 minutes after the end of the electrophoretic run. It does not require treatment of proteins prior to electrophoresis, and entails neither fixation of proteins in the gel, nor destaining. It is sufficiently sensitive to detect 0.5–1.0 g of protein per band. Furthermore, the simultaneous electrophoretic resolution and detection of protein and RNA on a single SDS-polyacrylamide gradient gel is reported.  相似文献   

18.
19.
Two highly purified proteins with quite different properties capable of oxaloacetate keto-enol-tautomerase activity (oxaloacetate keto-enol-isomerase, EC 5.3.2.2) were isolated from the bovine heart mitochondrial matrix. The first protein has an apparent molecular mass of 37 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-200 gel filtration. It is quite stable upon storage at 40 degrees C and reaches the maximal catalytic activity at pH 8.5 with a half-maximal activity at pH 7.0. The enzyme is specifically inhibited by oxalate and diethyloxaloacetate. When assayed in the enol----ketone direction at 25 degrees C (pH 9.0), the enzyme obeys a simple substrate saturation kinetics with Km and Vmax values of 45 microM and 74 units per mg of protein, respectively; the latter value corresponds to the turnover number of 2700 min-1. The second protein has an apparent molecular mass of 80 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-300 gel filtration. The enzyme is rapidly inactivated at 40 degrees C and shows a sharp pH optimum of activity at pH 9.0. The enzyme can be completely protected from thermal inactivation by oxaloacetate and dithiothreitol. The kinetic parameters of the enzyme as assayed in the enol----ketone direction at 25 degrees C (pH 9.0) are: Km = 220 microM and Vmax = 20 units per mg of protein; the latter corresponds to the turnover number of 1600 min-1. The enzyme activity is specifically inhibited by maleate and pyrophosphate. About 30% of the total oxaloacetate tautomerase activity in crude mitochondrial matrix is represented by the 37 kDa enzyme and about 70% by the 80 kDa protein.  相似文献   

20.
Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号