首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We discuss the thermodynamic behavior of a bilayer composed of two coupled leaves and derive the Gibbs Phase Rule for such a system. A simple phenomenological model of such a system is considered in which the state of the bilayer is specified by the relative number of ordering lipids in the outer leaf, and in the inner leaf. Two cases are treated. In the first, both inner and outer leaves could undergo phase separation when uncoupled from one another. The bilayer can exist in four different phases, and can exhibit three-phase coexistence. In the second case, an outer layer which can undergo phase separation by itself is coupled to an inner leaf which cannot. We find that when the coupling is weak, the bilayer can exist in only two phases, one in which the outer layer is rich in ordering lipids and the inner leaf is somewhat richer in them than when uncoupled, and another in which the outer layer is poor in ordering lipids and the inner leaf is poorer in them than when uncoupled. Increasing the coupling increases the effect on the inner leaf composition due to small changes in those of the outer leaf. For sufficiently large coupling, a phase transition occurs and the bilayer exhibits four phases as in the first case considered. Our results are in accord with several observations made recently.  相似文献   

3.
D Koshland  D Botstein 《Cell》1982,30(3):893-902
Secretion of beta-lactamase was studied in Salmonella typhimurium infected with P22 phage carrying wild-type and mutant alleles of the structural gene. Cellular location of precursor and mature products of wild-type and temperature-sensitive and chain-terminating mutants was analyzed by cell fractionation and by trypsin accessibility in intact and lysed spheroplasts. The precursors of wild-type and all these mutants (none of which alter the signal peptide) are found sequestered within the cell, while all the mature forms have at least partially been translocated across the inner membrane. Thus most beta-lactamase molecules traverse the membrane after completion of their translation. It seems that the carboxyl terminus of beta-lactamase is not required for translocation across the inner membrane but is required for the protein to appear in the periplasm as a soluble species.  相似文献   

4.
Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans‑envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB2FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans‑periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

5.
Techniques such as NMR, ESR, fluorescence depolarization, and neutron scattering are commonly used to investigate the physical properties of membranes. Oriented membrane bilayer systems (single crystals) are often employed in these investigations. It is important to know and be able to control the level of hydration in these samples. In particular, one must have confidence that a sample is in fact “fully hydrated” and remains so during the course of the experiment. Full hydration is difficult to obtain by hydrating oriented samples using water-saturated vapor. An alternative method for hydrating oriented samples is to surround the oriented sample by a polymer solution. Higher hydration levels are achieved using this method. Three nuclear magnetic resonance studies using headgroup deuterated 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) were done to compare the hydration level of oriented headgroup samples surrounded by a polymer/water solution and fully hydrated multibilayer dispersions. Transition temperatures, quadrupolar splittings (at 50°C) and spin-lattice relaxation times (at 50°C) were measured. The simple tests of the transition temperature and quadrupolar splitting to determine full hydration, as my results show, are not sufficient. In this paper I demonstrate that more fully hydrated samples can easily be achieved by surrounding the oriented sample with a 5 wt% polyethylene glycol/water solution than by hydrating in water saturated vapor.  相似文献   

6.
A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK 'twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co-translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat-dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C-terminal transmembrane helices (or 'C-tails'). Fusions between the identified transmembrane C-tails and the exclusively Tat-dependent reporter proteins TorA and SufI render the resultant chimeras membrane-bound. Export-linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat-dependent and YidC-independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins.  相似文献   

7.
The main steps in the construction of a computer model for a bacterial membrane are described. The membrane has been built of 72 lipid molecules, 54 of which being 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylethanolamine (POPE) and 18--1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidyl-rac-glycerol (POPG) molecules (thus in the proportion of 3:1). The membrane was hydrated with 1955 water molecules (approximately 27 water molecules per lipid). To neutralise the electronic charge (-e) on each POPG molecule, 18 sodium ions (Na+) were added to the membrane close to the POPG phosphate groups. The atomic charges on the POPE and POPG headgroups were obtained from ab initio quantum mechanical restrained electrostatic potential fitting (RESP) (Bayly et al., 1993, J. Phys. Chem. 97, 10269) using the GAMESS program at the 6-31G* level (Schmidt et al., 1993, J. Comput. Chem. 14, 1347). The model constructed in this way provided an initial structure for subsequent molecular dynamics simulation studies intended to elucidate the atomic level interactions responsible for the structure and dynamics of the bacterial membrane.  相似文献   

8.
The beta-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane beta-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5 degrees tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to alpha-helical membrane proteins.  相似文献   

9.
The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins.  相似文献   

10.
Viral infections have long been suspected to be causative agents in a number of inner ear dysfunctions. With few exceptions, the virus has not been demonstrated as the direct agent leading to hearing loss and/or vertigo. Selective inner ear changes have been observed recently in sensory and nonsensory epithelial cells in the ferret model for Reye's syndrome after intranasal inoculation with influenza B combined with aspirin administration and the creation of an arginine deficiency. Such findings suggest that these agents act synergistically on the inner ear, particularly on cells that are metabolically active, and that the ferret may now be a useful model to examine the role of certain upper respiratory tract viruses implicated in inner ear disorders, singly and in combination with other agents that may cause metabolic alterations.  相似文献   

11.
ATP11C is a member of the P4-ATPase flippase family that mediates translocation of phosphatidylserine (PtdSer) across the lipid bilayer. In order to characterize the structure and function of ATP11C in a model natural lipid environment, we revisited and optimized a quick procedure for reconstituting ATP11C into Nanodiscs using methyl-β-cyclodextrin as a reagent for the detergent removal. ATP11C was efficiently reconstituted with the endogenous lipid, or the mixture of endogenous lipid and synthetic dioleoylphosphatidylcholine (DOPC)/dioleoylphosphatidylserine (DOPS), all of which retained the ATPase activity. We obtained 3.4 Å and 3.9 Å structures using single-particle cryo-electron microscopy (cryo-EM) of AlF- and BeF-stabilized ATP11C transport intermediates, respectively, in a bilayer containing DOPS. We show that the latter exhibited a distended inner membrane around ATP11C transmembrane helix 2, possibly reflecting the perturbation needed for phospholipid release to the lipid bilayer. Our structures of ATP11C in the lipid membrane indicate that the membrane boundary varies upon conformational changes of the enzyme and is no longer flat around the protein, a change that likely contributes to phospholipid translocation across the membrane leaflets.  相似文献   

12.
The elastic behavior of closed multilayered membranes is analyzed with the assumption that the constituent layers are in close contact but are unconnected in the sense that they are free to slide by one another. The system exhibits three independent elastic deformation modes for any number of the constituent layers equal to or larger than two. These are the area expansivity of the membrane neutral surface, and the local and non-local membrane bending. The corresponding elastic moduli are expressed in terms of the elastic moduli of the constituent layers, their areas, and distances between their neutral surfaces. Closed multilayered membranes only differ from a closed bilayer membrane in that for any of their shapes some of the constituent layers are expanded and some compressed.  相似文献   

13.
14.
The ability of adriamycin to complex cardiolipin was used to determine the distribution of cardiolipin across the inner membrane of rat liver and heart mitochondria. In both mitochondrial types, about 57 +/- 5% of the total cardiolipin was found to be located in the cytoplasmic face of the inner membrane. Mitochondria and mitoplasts were used to study the cytoplasmic face of the inner membrane, purified submitochondrial vesicles with inverted membrane orientation for the matrix face. The cardiolipin amount titrated by adriamycin in the latter was found to be complementary to the amount titrated in the cytoplasmic face. The adriamycin association constant determined for the first saturation level of mitochondria was in good agreement with the value published by Goormaghtigh et al. (Goormaghtigh, E., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1980) Biochim. Biophys. Acta 597, 1-14) for cardiolipin in artificial membranes. Two binding plateaus were observed when increasing amounts of adriamycin were added to mitochondria. The plateau at higher concentrations is conveniently explained by the penetration of adriamycin into mitochondria and the titration of cardiolipin in the matrix face. Scatchard plot analysis of the binding curves leading to the two plateaus produced almost identical association constants. The total amount of cardiolipin in mitochondria calculated from curves of this type corresponded to the total amount of cardiolipin determined by phosphate analysis of extracts, analyzed by thin layer chromatography.  相似文献   

15.
Progress over the past 10 years has made it possible to construct a simple model of neurotransmitter release. Currently, some models use artificially formed vesicles to represent synaptic vesicles and a planar lipid bilayer as a presynaptic membrane. Fusion of vesicles with the bilayer is via channel proteins in the vesicle membrane and an osmotic gradient. In this paper, a framework is presented for the successful construction of a more complete model of synaptic transmission. This model includes real synaptic vesicles that fuse with a planar bilayer. The bilayer contains acetylcholine receptor (AChR) channels which function as autoreceptors in the membrane. Vesicle fusion is initiated following a Ca2+ flux through voltage-gated Ca2+ channels. Key steps in the plan are validated by mathematical modeling. Specifically, the probability that a reconstituted AChR channel opens following the release of ACh from a fusing vesicle, is calculated as a function of time, quantal content, and number of reconstituted AChRs. Experimentally obtainable parameters for construction of a working synapse are given. The inevitable construction of a full working model will mean that the minimal structures necessary for synaptic transmission are identified. This will open the door in determining regulatory and modulatory factors of transmitter release.  相似文献   

16.
The dopamine transporter (DAT) operates via facilitated diffusion, harnessing an inward Na+ gradient to drive dopamine from the extracellular synaptic cleft to the neuron interior. The DAT is relevant to central nervous system disorders such as Parkinson disease and attention‐deficit hyperactivity disorder and is the primary site of action for the abused psychostimulants cocaine and amphetamines. Crystallization of a DAT homolog, the bacterial leucine transporter LeuT, provided the first reliable 3‐D DAT template. Here, the LeuT crystal structure and the DAT molecular model have been combined with their respective substrates, leucine and dopamine, in lipid bilayer molecular dynamics simulations toward tracking substrate movement along the protein's substrate/ion permeation pathway. Specifically, movement of residue pairs that comprise the “external gate” was followed as a function of substrate presence. The transmembrane (TM) 1 arginine‐TM 10 aspartate strut formed less readily in DAT compared with LeuT, with or without substrate present. For LeuT but not DAT, the addition of substrate enhanced the chances of forming the TM 1‐10 bridge. Also, movement of the fourth extracellular loop EL‐4 in the presence of substrate was more pronounced for DAT, the EL‐4 unwinding to a degree. The overall similarity between the LeuT and DAT molecular dynamics simulations indicated that LeuT was a legitimate model to guide DAT structure‐function predictions. There were, nevertheless, differences significant enough to allow for DAT‐unique insights, which may include how cocaine, methylphenidate (Ritalin, NIDA Drug Supply, Rockville, MD), and other DAT blockers are not recognized as substrates even though they can access the primary substrate binding pocket. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
According to the liquid hydrocarbon model, the lipid bilayer is viewed simply as a thin slice of bulk hydrocarbon liquid. This allows the water permeability of the bilayer to be calculated from bulk properties. In this paper the prediction of the liquid hydrocarbon model is compared with the known water permeability coefficient of the glycerol monoolein/n-hexadecane bilayer (Fettiplace, R. (1978) Biochim. Biophys. Acta 513, 1–10). As the alkyl chain of glycerol monoolein is equivalent to 8-heptadecene, the water permeability coefficient of 8-heptadecene/n-hexadecane mixtures was measured for temperatures between 20 and 35°C. The mole fraction of n-hexadecane in the bulk liquid was chosen at each temperature to match the known mole fraction of n-hexadecane in the bilayer (White, S. (1976) Nature 262, 421–422). The predicted water permeability coefficient agrees with the measured value at 32°C but is 40% above the measured value at 20°C. The apparent activation energy predicted by the liquid hydrocarbon model is 9.0 ± 0.3 kcal/mol, while the measured value is 14.2 ± 1.0 kcal/mol. The failure of the liquid hydrocarbon model probably results from a different molecular organization of the hydrocarbon chains in the bilayer and in the bulk liquid.  相似文献   

18.
19.
20.
Summary The SCO1 gene of Saccharomyces cerevisiae encodes a 30 kDa protein which is specifically required for a post-translational step in the accumulation of subunits 1 and 2 of cytochrome c oxidase (COXI and COXII). Antibodies directed against a -Gal::SCO1 fusion protein detect SCO1 in the mitochondrial fraction of yeast cells. The SCO1 protein is an integral membrane protein as shown by its resistance to alkaline extraction and by its solubilization properties upon treatment with detergents. Based on the results obtained by isopycnic sucrose gradient centrifugation and by digitonin treatment of mitochondria, SCO1 is a component of the inner mitochondrial membrane. Membrane localization is mediated by a stretch of 17 hydrophobic amino acids in the amino-terminal region of the protein. A truncated SCO1 derivative lacking this segment, is no longer bound to the membrane and simultaneously loses its biological function. The observation that membrane localization of SCO1 is affected in mitochondria of a rho 0 strain, hints at the possible involvement of mitochondrially coded components in ensuring proper membrane insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号