首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghosh JG  Estrada MR  Clark JI 《Biochemistry》2005,44(45):14854-14869
Protein pin arrays identified seven interactive sequences for chaperone activity in human alphaB crystallin using natural lens proteins, beta(H) crystallin and gammaD crystallin, and in vitro chaperone target proteins, alcohol dehydrogenase and citrate synthase. The N-terminal domain contained two interactive sequences, (9)WIRRPFFPFHSP(20) and (43)SLSPFYLRPPSFLRAP(58). The alpha crystallin core domain contained four interactive sequences, (75)FSVNLDVK(82) (beta3), (113)FISREFHR(120), (131)LTITSSLS(138) (beta8), and (141)GVLTVNGP(148) (beta9). The C-terminal domain contained one interactive sequence, (157)RTIPITRE(164), that included the highly conserved I-X-I/V motif. Two interactive sequences, (73)DRFSVNLDVKHFS(85) and (131)LTITSSLSDGV(141), belonging to the alpha crystallin core domain were synthesized as peptides and assayed for chaperone activity in vitro. Both synthesized peptides inhibited the thermal aggregation of beta(H) crystallin, alcohol dehydrogenase, and citrate synthase in vitro. Five of the seven chaperone sequences identified by the pin arrays overlapped with sequences identified previously as sequences for subunit-subunit interactions in human alphaB crystallin. The results suggested that interactive sequences in human alphaB crystallin have dual roles in subunit-subunit assembly and chaperone activity.  相似文献   

2.
Knowledge of the interactive domains on the surface of small heat shock proteins (sHSPs) is necessary for understanding the assembly of complexes and the activity as molecular chaperones. The primary sequences of 26 sHSP molecular chaperones were aligned and compared. In the interactive beta3 sequence, 73DRFSVNLDVKHFS85 of human alphaB crystallin, Ser-76, Asn-78, Lys-82, and His-83 were identified as nonconserved residues on the exposed surface of the alpha crystallin core domain. Site-directed mutagenesis produced the mutant alphaB crystallins: S76E, N78G, K82Q, and H83F. Domain swapping with homologous beta3 sequences, 32EKFEVGLDVQFFT44 from Caenorhabditis elegans sHSP12.2 or 69DKFVIFLDVKHFS81 from alphaA crystallin, resulted in the mutant alphaB crystallins, CE1 and alphaA1, respectively. Decreased chaperone activity was observed with the point mutants N78G, K82Q, and H83F and with the mutant, CE1, in aggregation assays using betaL crystallin, alcohol dehydrogenase (ADH), or citrate synthase (CS). The S76E mutant had minimal effect on chaperone activity, and domain swapping with alphaA crystallin had no effect on chaperone activity. The mutations that resulted in altered chaperone activity, produced minimal modification to the secondary, tertiary, and quaternary structure of human alphaB crystallin as determined by ultraviolet circular dichroism spectroscopy, chymotrypsin proteolysis, and size exclusion chromatography. Chaperone activity was influenced by the amount of unfolding of the target proteins and independent of complex size. The results characterized the importance of the exposed side chains of Glu-78, Lys-82, and His-83 in the interactive beta3 sequence of the alpha crystallin core domain in alphaB crystallin for chaperone function.  相似文献   

3.
The site for ATP interactions in human alphaB crystallin, the archetype of small heat-shock proteins, was identified and characterized to resolve the controversial role of ATP in the function of small heat-shock proteins. Comparative sequence alignments identified the alphaB crystallin sequence, (82)KHFSPEELKVKVLGD(96) as a Walker-B ATP-binding motif that is found in several ATP-binding proteins, including five molecular chaperones. Fluorescence resonance energy transfer and mass spectrometry using a novel fluorescent ATP analog, 8-azido-ATP-[gamma]-1-naphthalenesulfonic acid-5(2-aminoethylamide) (azido-ATP-EDANS) and a cysteine mutant of human alphaB crystallin (S135C) conjugated with a fluorescent acceptor, eosin-5-maleimide (EMA) identified the beta4-beta8 groove as the ATP interactive site in alphaB crystallin. A 44% decrease in the emitted fluorescence of azido-ATP-EDANS at the absorption maximum of S135C-EMA and a corresponding 50% increase in the fluorescence emission of S135C-EMA indicated a close spatial relationship between azido-ATP-EDANS and the center of the beta8 strand ((131)LTITSSLS(138)). Liquid chromatography, electrospray ionization mass spectrometry identified two peptide fragments of the alphaB crystallin Walker-B motif photo-affinity-labeled with azido-ATP-EDANS confirming the beta4-beta8 groove as an ATP interactive site. The results presented here clearly establish the beta4-beta8 groove as the ATP interactive region in alphaB crystallin, and are in contrast to the existing paradigm that classifies small heat-shock proteins as ATP-independent chaperones.  相似文献   

4.
Ghosh JG  Shenoy AK  Clark JI 《Biochemistry》2007,46(21):6308-6317
Protein pin arrays assessed interactions between alphaB crystallin and 12 regulatory proteins, including EGF, FGF-2, IGF-1, NGF-beta, TGF-beta, VEGF, insulin, beta-catenin, caspase-3, caspase-8, Bcl-2, and Bcl-xL, which are important in cellular differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis. FGF-2, NGF-beta, VEGF, insulin, and beta-catenin had strong interactions with human alphaB crystallin peptides, and the alphaB crystallin interactive sequences for these proteins were identified. The seven remaining proteins (EGF, IGF-1, TGF-beta, caspase-3, caspase-8, BCl-2, and Bcl-xL) did not interact with alphaB crystallin. The alphaB crystallin sequences that interacted with FGF-2, NGF-beta, VEGF, insulin, and beta-catenin overlapped with sequences that selectively interact with partially unfolded proteins, suggesting a common function for alphaB crystallin in chaperone activity and the regulation of cell growth and differentiation. Chaperone assays conducted with full-length alphaB crystallin and synthetic alphaB crystallin peptides confirmed the ability of alphaB crystallin to protect against the aggregation of FGF-2 and VEGF, suggesting that alphaB crystallin protects these proteins against unfolding and aggregation under conditions of stress. This is the first report in which sequences involved in interactions with regulatory proteins, including FGF-2, NGF-beta, VEGF, insulin, and beta-catenin, were identified in a small heat shock protein.  相似文献   

5.
Ghosh JG  Shenoy AK  Clark JI 《Biochemistry》2006,45(46):13847-13854
The functions of the interactive sequences in human alphaB crystallin that are involved in chaperone activity and complex assembly of small heat shock proteins need to be characterized to understand the mechanisms of action on unfolding and misfolding proteins. Protein pin arrays identified the hydrophobic N-terminal sequence (41STSLSPFYLRPPSFLRAP58) and the polar C-terminal sequence (155PERTIPITREE165) as interactive domains in human alphaB crystallin, which were then deleted to evaluate their importance in complex assembly and chaperone activity. Size exclusion chromatography determined that the complexes formed by the deletion mutants, Delta41-58 and Delta155-165, were larger and more polydisperse than the wild-type (wt) alphaB crystallin complex. In chaperone assays, the Delta41-58 mutant was as effective as wt alphaB crystallin in protecting partially unfolded betaL crystallin and alcohol dehydrogenase (ADH) and significantly less effective than wt alphaB crystallin in protecting unfolded citrate synthase (CS) from aggregation. Chaperone activity did not correlate with complex size but corresponded with the amount of substrate protein unfolding. The results confirmed the importance of N-terminal residues 41-58 in selective interactions with completely unfolded substrates. Poor solubility and limited or no chaperone activity for the three substrates characterized the Delta155-165 deletion mutant, which demonstrated the importance of C-terminal residues 155-165 in maintaining the solubility of unfolded substrates in a manner independent of the amount of substrate protein unfolding. The results presented in this report established that interactive domains in the N- and C-termini of human alphaB crystallin are important for the recognition, selection, and solubility of unfolding substrate proteins.  相似文献   

6.
Protein pin array technology was used to identify subunit-subunit interaction sites in the small heat shock protein (sHSP) alphaB crystallin. Subunit-subunit interaction sites were defined as consensus sequences that interacted with both human alphaA crystallin and alphaB crystallin. The human alphaB crystallin protein pin array consisted of contiguous and overlapping peptides, eight amino acids in length, immobilized on pins that were in a 96-well ELISA plate format. The interaction of alphaB crystallin peptides with physiological partner proteins, alphaA crystallin and alphaB crystallin, was detected using antibodies and recorded using spectrophotometric absorbance. Five peptide sequences including 37LFPTSTSLSPFYLRPPSF54 in the N terminus, 75FSVNLDVK82)(beta3), 131LTITSSLS138 (beta8) and 141GVLTVNGP148 (beta9) that form beta strands in the conserved alpha crystallin core domain, and 155PERTIPITREEK166 in the C-terminal extension were identified as subunit-subunit interaction sites in human alphaB crystallin using the novel protein pin array assay. The subunit-subunit interaction sites were mapped to a three-dimensional (3D) homology model of wild-type human alphaB crystallin that was based on the crystal structure of wheat sHSP16.9 and Methanococcus jannaschi sHSP16.5 (Mj sHSP16.5). The subunit-subunit interaction sites identified and mapped onto the homology model were solvent-exposed and had variable secondary structures ranging from beta strands to random coils and short alpha helices. The subunit-subunit interaction sites formed a pattern of hydrophobic patches on the 3D surface of human alphaB crystallin.  相似文献   

7.
Molecular chaperones including the small heat shock proteins, alphaB crystallin and sHSP27 participate in the assembly, disassembly, and reorganization of the cytoskeleton during cell development and differentiation. While alphaB crystallin and sHSP27 stabilize and modulate filament assembly and re-organization, the sequences and structural domains mediating interactions between these proteins and filaments are unknown. It is important to define these interactive domains in order to understand differential interactions between chaperones and stable or unfolding filaments and their function in the cellular stress response. Protein pin arrays identified sequences in human alphaB crystallin that selectively interacted with native or partially unfolded filament proteins desmin, glial-fibrillary acidic protein, and actin. Circular dichroism spectroscopy determined differences in the structure of these filaments at 23 and 45 degrees C. Seven alphaB crystallin sequences had stronger interactions with desmin and six sequences had stronger interactions with glial-fibrillary acidic protein at 23 degrees C than at 45 degrees C. The alphaB crystallin sequences (33)LESDLFPTSTSLSPFYLRPPSFLR(56) and (129)DPLTITSSLSSDGV(145) had the strongest interactions with actin at 23 degrees C, while (57)APSWFDTG(64), (111)HGFISREF(118), (145)VNGPRKQVSG(154), and (155)PERTIPITREEK(165) had the strongest interactions with actin at 45 degrees C. The actin interactive sequences of alphaB crystallin overlapped with previously identified alphaB crystallin chaperone sequences and were synthesized to evaluate their effect on the assembly and aggregation of actin. Full-length alphaB crystallin and the core domain chaperone sequence (131)LTITSSLSSDGV(143) promoted actin polymerization at 37 degrees C and inhibited depolymerization and aggregation at 50 degrees C. The results support the hypothesis that interactive domains in alphaB crystallin have multiple functions in stabilizing the cytoskeleton and protecting cytosolic proteins from unfolding.  相似文献   

8.
The population of one or more partially folded states has been proposed as a critical initial step in amyloid formation for several proteins. Here we use equilibrium denaturation measured by (1)H-(15)N NMR to determine the conformational properties of an amyloidogenic intermediate of human beta(2)-microglobulin (beta(2)m) formed at low pH. The data show that this amyloid precursor is a noncooperatively stabilized ensemble that retains stable structure in five of the seven beta-strands that comprise the native fold. The amyloid precursors of beta(2)m and transthyretin have similar properties despite having structurally unrelated native folds. The data offer a rationale as to why these proteins are both amyloidogenic at low pH and suggest that amyloidosis of these and other proteins may involve ordered assembly from a precursor with similar conformational features.  相似文献   

9.
Two monoclonal antibodies, beta 208 and beta 210, against the beta subunit of the F(1) ATPase from Escherichia coli reacted with an intact beta subunit and also a peptide corresponding to a portion of beta between residues 1 and 145. Mutations at Ala-1, Val-15, Glu-16, Phe-17, Leu-29, Gly-65, or Leu-66, and His-110 or Arg-111 for beta 210 and beta 208, respectively, caused decreased antibody binding to beta, suggesting that these residues form the epitopes and are thought to lie close together on the surface of the beta subunit. The topological locations of the corresponding residues in the atomic structure of the bovine beta subunit agree well with these expectations, except for Ala-1 and Leu-29. beta 210 binds to two beta strands including the epitope residues that are 50 residues apart, indicating that this antibody recognizes the tertiary structure of the N-terminal end region. Mutations in the epitope residues of beta 210 do not affect the F(1) ATPase activity, suggesting that surfaces of the two beta strands in the amino-terminal end region are not functionally essential. To analyze the functional importance around His-110 recognized by beta 208 we introduced site specific mutations at residues His-110 and Ile-109. Ile-109 to Ala or Arg, and His-110 to Ala or Asp caused defective assembly of F(1). However, the His-110 to Arg mutation had no effect on molecular assembly, suggesting that Ile-109 and His-110, especially the positive charge of His-110 are essential for the assembly of F(1). The His-110 to Arg mutation caused a large decrease in F(1)-ATPase activity, suggesting that a subtle change in the topological arrangement of the positive charge of His-110 located on the surface of beta plays an important role in the catalytic mechanism of the F(1)-ATPase.  相似文献   

10.
Ghosh JG  Estrada MR  Clark JI 《Biochemistry》2006,45(32):9878-9886
The functional importance of the beta8 sequence ((131)LTITSSLS(138)), which is on the surface of the alpha crystallin core domain of human alphaB crystallin, was evaluated using site-directed mutagenesis. Ultraviolet circular dichroism determined that mutating the surface-exposed, nonconserved residues, Leu-131, Thr-132, Thr-134, Ser-135, Ser-136, and Ser-138 individually or in combination (alphaAbeta8 and CEbeta8), had no measurable effect on secondary and tertiary structure. Size exclusion chromatography determined the size of the complexes formed by the beta8 mutants to be 6-8 subunits larger than wt alphaB crystallin. In chaperone assays, the protective effect of the L131S, T132A, and S135C mutants of the beta8 sequence was similar to wt alphaB crystallin when beta(L) crystallin and alcohol dehydrogenase were the chaperone substrates and decreased to 66% when citrate synthase was the chaperone substrate. In contrast, the chaperone activity for all three substrates was dramatically reduced for the T134K, S138A, S136H, and CEbeta8 mutants. The prominent location of Thr-134, Ser-136, and Ser-138 on the exposed surface of the alpha crystallin core domain could account for the effect on complex assembly and chaperone activity. Modulation of chaperone activity by the exposed residues of the beta8 sequence in the alpha crystallin core domain was independent of complex size. The results established the beta3-beta8-beta9 surface of the alpha crystallin core domain as an interface for complex assembly and chaperone activity.  相似文献   

11.
The molecular chaperone activity of alphaB crystallin, an important stress protein in humans, is regulated by physiological factors, including temperature, pH, Ca2+, and ATP. In this study, the role of these factors in regulating the subunit dynamics of human alphaB crystallin was investigated using surface plasmon resonance (SPR). SPR experiments indicate that at temperatures above 37 degrees C, where alphaB crystallin has been reported to have higher chaperone activity, the subunit dynamics of alphaB crystallin were increased with faster association and dissociation rates. SPR experiments also indicate that interactions between alphaB crystallin subunits were enhanced with much faster association and slower dissociation rates at pH values below 7.0, where alphaB crystallin has been reported to have lower chaperone activity. The results suggest that the dynamic and rapid subunit exchange rate may regulate the chaperone activity of alphaB crystallin. The effect of Ca2+ and ATP on the subunit dynamics of alphaB crystallin was minimal, suggesting that Ca2+ and ATP modulate the chaperone activity of alphaB crystallin without altering the subunit dynamics. Based on the SPR results and previously reported biochemical data for the chaperone activity of alphaB crystallin under different conditions of temperature and pH, a model for the relationship between the subunit dynamics and chaperone activity of alphaB crystallin is established. The model is consistent with previous biochemical data for the chaperone activity and subunit dynamics of small heat shock proteins (sHSPs) and establishes a working hypothesis for the relationship between complex assembly and chaperone activity for sHSPs.  相似文献   

12.
A point mutation of a highly conserved arginine residue in alphaA and alphaB crystallins was shown to cause autosomal dominant congenital cataract and desmin-related myopathy, respectively, in humans. To study the structural and functional consequences of this mutation, human alphaA and alphaB crystallin genes were cloned and the conserved arginine residue (Arg-116 in alphaA crystallin and Arg-120 in alphaB crystallin) mutated to Cys and Gly, respectively, by site-directed mutagenesis. The recombinant wild-type and mutant proteins were expressed in Escherichia coli and purified. The mutant and wild-type proteins were characterized by SDS-polyacrylamide gel electrophoresis, Western immunoblotting, gel permeation chromatography, fluorescence, and circular dichroism spectroscopy. Biophysical studies reveal significant differences between the wild-type and mutant proteins. The chaperone-like activity was studied by analyzing the ability of the recombinant proteins to prevent dithiothreitol-induced aggregation of insulin. The mutations R116C in alphaA crystallin and R120G in alphaB crystallin reduce the chaperone-like activity of these proteins significantly. Near UV circular dichroism and intrinsic fluorescence spectra indicate a change in tertiary structure of the mutants. Far UV circular dichroism spectra suggest altered packing of the secondary structural elements. Gel permeation chromatography reveals polydispersity for both of the mutant proteins. An appreciable increase in the molecular mass of the mutant alphaA crystallin is also observed. However, the change in oligomer size of the alphaB mutant is less significant. These results suggest that the conserved arginine of the alpha-crystallin domain of the small heat shock proteins is essential for their structural integrity and subsequent in vivo function.  相似文献   

13.
Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid fibrils. Other amyloidogenic proteins, such as the beta amyloid peptide involved in Alzheimer's disease and the prion protein (PrP) associated with Creuztfeldt-Jakob's disease, are known to possess "tilted peptides". These peptides are short protein fragments that adopt an oblique orientation at a hydrophobic/hydrophilic interface, which enables destabilization of the membranes. In this paper, sequence analysis and molecular modelling predict that the 67-78 fragment of alpha-synuclein is a tilted peptide. Its destabilizing properties were tested experimentally. The alpha-synuclein 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. The neuronal toxicity, studied using human neuroblastoma cells, demonstrated that the alpha-synuclein 67-78 peptide induces neurotoxicity. A mutant designed by molecular modelling to be amphipathic was shown to be significantly less fusogenic and toxic than the wild type. In conclusion, we have identified a tilted peptide in alpha-synuclein, which could be involved in the toxicity induced during amyloidogenesis of alpha-synuclein.  相似文献   

14.
Beta(2)-microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)m that has been linked to cancer and inflammation and may be present in the circulation of dialysis patients. This beta(2)m variant, DeltaK58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)m. Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that DeltaK58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is 1 order of magnitude faster in DeltaK58-beta(2)m than in wt-beta(2)m, and at 37 degrees C the half-time for unfolding is more than 170-fold faster than at 15 degrees C. Conformational changes are also reflected by a very prominent Congo red binding of DeltaK58-beta(2)m at 37 degrees C, by the evolution of thioflavin T fluorescence, and by changes in intrinsic fluorescence. After a few days at 37 degrees C, in contrast to wt-beta(2)m, DeltaK58-beta(2)m forms well-defined high molecular weight aggregates that are detected by size-exclusion chromatography. Atomic force microscopy after seeding with amyloid-beta(2)m fibrils under conditions that induce minimal fibrillation in wt-beta(2)m shows extensive amyloid fibrillation in DeltaK58-beta(2)m samples. The results highlight the instability and amyloidogenicity under near physiological conditions of a slightly modified beta(2)m variant generated by limited proteolysis and illustrate stages of amyloid formation from early conformational variants to overt fibrillation.  相似文献   

15.
Small heat shock proteins alphaA and alphaB crystallin form highly polydisperse oligomers that frustrate protein aggregation, crystallization, and amyloid formation. Here, we present the crystal structures of truncated forms of bovine alphaA crystallin (AAC59–163) and human alphaB crystallin (ABC68–162), both containing the C‐terminal extension that functions in chaperone action and oligomeric assembly. In both structures, the C‐terminal extensions swap into neighboring molecules, creating runaway domain swaps. This interface, termed DS, enables crystallin polydispersity because the C‐terminal extension is palindromic and thereby allows the formation of equivalent residue interactions in both directions. That is, we observe that the extension binds in opposite directions at the DS interfaces of AAC59–163 and ABC68–162. A second dimeric interface, termed AP, also enables polydispersity by forming an antiparallel beta sheet with three distinct registration shifts. These two polymorphic interfaces enforce polydispersity of alpha crystallin. This evolved polydispersity suggests molecular mechanisms for chaperone action and for prevention of crystallization, both necessary for transparency of eye lenses.  相似文献   

16.
Thioesterase II is a 29-kDa monomer which, in certain specialized tissues, acts as a chain terminator in fatty acid synthesis by hydrolyzing medium-chain fatty acids from the fatty acid synthase. As with serine proteases, hydrolysis appears to involve acylation of the active site serine residue (Ser-101) assisted by a histidine, tentatively identified as His-237. To determine whether in the folded protein His-237 is close enough to accept a proton from the Ser-101 hydroxyl, we have made use of a Ser101Cys mutant which retains up to 90% of catalytic activity. Unlike the wild-type enzyme, the S101C thioesterase is inhibited with stoichiometric amounts of the bifunctional alkylating reagent 1,3-dibromopropanone. To facilitate identification of the alkylated residue(s), the keto group introduced into the dibromopropanone-modified S101C mutant was radiolabeled by reduction with sodium [3H] borohydride. The protein was then digested and the radiolabeled peptides analyzed by amino acid sequencing and mass spectrometry. The experimental data unambiguously showed that dibromopropanone cross-linked the active site Cys-101 with His-237, demonstrating that these residues are positioned within 5 A of each other. These data strongly support the hypothesis that in the wild-type thioesterase His-237 accepts a proton from Ser-101, thus increasing its nucleophilic character and improving the catalytic efficiency of the enzyme. The possibility that exchange of cysteine and serine active site residues has occurred in the evolution of thioesterases is discussed.  相似文献   

17.
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.  相似文献   

18.
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.  相似文献   

19.
We have developed a statistical mechanics algorithm, TANGO, to predict protein aggregation. TANGO is based on the physico-chemical principles of beta-sheet formation, extended by the assumption that the core regions of an aggregate are fully buried. Our algorithm accurately predicts the aggregation of a data set of 179 peptides compiled from the literature as well as of a new set of 71 peptides derived from human disease-related proteins, including prion protein, lysozyme and beta2-microglobulin. TANGO also correctly predicts pathogenic as well as protective mutations of the Alzheimer beta-peptide, human lysozyme and transthyretin, and discriminates between beta-sheet propensity and aggregation. Our results confirm the model of intermolecular beta-sheet formation as a widespread underlying mechanism of protein aggregation. Furthermore, the algorithm opens the door to a fully automated, sequence-based design strategy to improve the aggregation properties of proteins of scientific or industrial interest.  相似文献   

20.
Beta2-microglobulin (beta2-m), a typical immunoglobulin domain made of seven beta-strands, is a major component of amyloid fibrils formed in dialysis-related amyloidosis. To understand the mechanism of amyloid fibril formation in the context of full-length protein, we prepared various mutants in which proline (Pro) was introduced to each of the seven beta-strands of beta2-m. The mutations affected the amyloidogenic potential of beta2-m to various degrees. In particular, the L23P, H51P, and V82P mutations significantly retarded fibril extension at pH 2.5. Among these, only L23P is included in the known "minimal" peptide sequence, which can form amyloid fibrils when isolated as a short peptide. This indicates that the residues in regions other than the minimal sequence, such as H51P and V82P, determine the amyloidogenic potential in the full-length protein. To further clarify the mutational effects, we measured their stability against guanidine hydrochloride of the native state at pH 8.0 and the amyloid fibrils at pH 2.5. The amyloidogenicity of mutants showed a significant correlation with the stability of the amyloid fibrils, and little correlation was observed with that of the native state. It has been proposed that the stability of the native state and the unfolding rate to the amyloidogenic precursor as well as the conformational preference of the denatured state determine the amyloidogenicity of the proteins. The present results reveal that, in addition, stability of the amyloid fibrils is a key factor determining the amyloidogenic potential of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号