首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In herbaceous dominated patches and ecosystems, tree establishment is influenced partly by the ability of woody seedlings to survive and grow in direct competition with herbaceous vegetation. We studied the importance of season long wet and dry spells on the competitive interactions between herbaceous vegetation and oak seedlings along a light and nitrogen gradient in an infertile secondary successional grassland in central North America. We conducted a field experiment in which seedlings of bur oak (Quercus macrocarpa) and northern pin oak (Q. ellipsoidalis) were exposed to two levels of light (full sun and 80% shade), three levels of nitrogen input (0, 5, 15 g m–1 yr–1), and three levels of water input (low, medium and high). In addition, seedlings were grown with and without the presence of surrounding herbaceous vegetation under both light and all three water levels. Seedling survival, growth, and rate of photosynthesis were significantly affected by competition with herbaceous vegetation and these effects varied along the multiple resource gradient. Overall, seedling survival of both species was significantly greater in wetter and shaded plots and when surrounding herbaceous vegetation was removed and was lower in nitrogen enriched plots. We found that soil water was significantly affected by varying inputs of water, light, and the presence or absence of herbaceous vegetation, and that seedling survival and rate of photosynthesis were highly correlated with available soil water. Our findings show that the impact of season long wet and dry spells on tree seedling success in grasslands can be affected by light and soil nitrogen availability.  相似文献   

2.
Conifer seedling distribution and survival in an alpine-treeline ecotone   总被引:11,自引:0,他引:11  
The importance of seedling establishment to the position ofalpine-treeline is recognized, yet little is known about factorsaffecting the survival of seedlings of treeline conifers during their initialyears of growth and establishment. This establishment period may have thegreatest mortality of all life stages until death of mature trees by disease orfire. Spatial and temporal patterns in the distribution and survival ofseedlings of Picea engelmannii and Abieslasiocarpa were evaluated over four years in analpine-treeline ecotone of the Snowy Range, Wyoming, USA. Seedlings andsaplings of both species occurred most frequently near islands of adult trees.For P. englemannii, this appeared partly due to decreasedsurvivorship of young seedlings (< 5 cm height) with greaterdistance away from tree islands. Survival of emergents of P.engelmannii was 28% greater on the north compared to southsides of tree islands, 48% lower on south-facing slopes comparedto other aspects, and 70% greater with overhead cover such as treebranches. Survival of emergents was greater in microsites with grass cover(90% survival) compared to without ground cover (44% survival),but lowest in microsites surrounded, but not covered, by grass (19%).From 1994–1999, natural seedling emergence and survival washighest in 1995 (80% survival of 221 P.engelmannii,and 100% of seven A. lasiocarpa, in a sample areaof432 m2), when the smallest mean difference in dailymaximum and minimum temperatures occurred, and lowest in 1994 (30% ofseven P. engelmannii), when above-averagetemperatures were accompanied by low rainfall and clear skies. The growthseasons of 1994 and 1995 had among the lowest and highest precipitation of theprevious 30-year period, respectively. In an artificial seedingexperiment, less than 20% of seedlings of both species survived theirfirst complete year of growth. In the autumn of the second year, almost25% additional mortality was observed in the remaining experimentalseedlings when they were exposed to clear, cold skies without the normalprotection of snowcover. Both spatial and temporal patterns of seedlingsurvivalsuggest that exposure to high sunlight may exacerbate low-temperatureandwater stress in young conifer seedlings, inhibiting their establishment in thisalpine treeline.  相似文献   

3.
The development of seedlings of two miombo trees, Brachystegia spiciformis Benth. and Julbernardia paniculata (Benth.) Troupin, was studied during two growing seasons (December 1989–April 1991) at a Zambian grassland site. Seed germination rates under laboratory and field conditions were not significantly different although germination in the field was delayed by 1–2 weeks due to insufficient rainfall. After one year of storage J. paniculata seed germination had declined from 67% to 17% while germination of B. spiciformis seeds remained at about 83%.Leaf production was confined to the rainy season. Leaf fall occurred during the dry season and in J. paniculata this was followed by shoot die-back during the hot dry period (August–November). Two-thirds of B. spiciformis seedlings experienced shoot die-back but shoot die-back did not necessarily result in seedling mortality. Seedling deaths occurred during the germination period (6–10 weeks after planting) and in the hot dry period (40–50 weeks after planting) during September–November. Survivorship of B. spiciformis seedlings was 74% at the end of the second growing season while this was 46% for J. paniculata.Shoot growth was negligible during the second growing season. In fact mean maximum leaf area of B. spiciformis decreased significantly from 19.7 cm2 (SD=5.7) per plant at the end of the first growing season to 13.3 cm2 (SD=5.8) at the end of the second growing season (t=3.31, P<0.01). However, root biomass of B. spiciformis seedlings increased 2.8 times during the second growing season.These results suggest that shoot die-back in seedlings of miombo trees is caused by drought and that the slow shoot growth is the result of allocating most of the biomass to root growth during seedling development.  相似文献   

4.
Invasive non‐native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non‐native species, particularly grasses. Within a grass‐dominated site in leeward Hawaii, we explored the mechanisms by which non‐native Pennisetum setaceum, African fountain grass, limits seedlings of native species. We planted 1,800 seedlings of five native trees, three native shrubs, and two native vines into a factorial field experiment to examine the effects of grass removal (bulldozed vs. clipped plus herbicide vs. control), shade (60% shade vs. full sun), and water (supplemental vs. ambient) on seedling survival, growth, and physiology. Both grass removal and shade independently increased survival and growth, as well as soil moisture. Seedling survival and relative growth rate were also significantly dependent on soil moisture. These results suggest that altering soil moisture may be one of the primary mechanisms by which grasses limit native seedlings. Grass removal increased foliar nitrogen content of seedlings, which resulted in an increase in leaf‐level photosynthesis and intrinsic water use efficiency. Thus in the absence of grasses, native species showed increased productivity and resource acquisition. We conclude that the combination of grass removal and shading may be an effective approach to the restoration of degraded tropical dry forests in Hawaii and other ecologically similar ecosystems.  相似文献   

5.
The growth situation of seedlings of treeline species can be used as an indicator for the upper or lower shift of treeline under global climate change, since any advance of a treeline would require seedling survival above the current treeline elevation. We investigated seedling and sapling density of two dominant conifers Abies georgei var. smithii and Sabina saltuaria at lower, middle and upper altitude of two contrasting slopes in Sergyemla Mountain, southeast Tibet. Seedling and sapling age structure of A. georgei var. smithii was analyzed further. Seedling density of both species, as well as sapling density of S. saltuaria, showed a declining trend as elevation increased. Sapling density of A. georgei var. smithii was somewhat higher at middle altitude than other positions. The frequency of old-aged A. georgei var. smithii seedlings/saplings (age >10 year) was the lowest at the highest altitude and tended to increase with the declining elevation. The results indicate that the higher density of seedling and sapling in high-altitude might be attributed to better soil moisture availability and solar insolation than in the mid- and low-altitudes during the growth season. Yet confined by other environmental factors, A. georgei var. smithii seedlings in high-altitude suffer from lower survival rate and lower possibility to grow tall compared with those in mid- and low-altitudes.  相似文献   

6.
The growth situation of seedlings of treeline species can be used as an indicator for the upper or lower shift of treeline under global climate change, since any advance of a treeline would require seedling survival above the current treeline elevation. We investigated seedling and sapling density of two dominant conifers Abies georgei var. smithii and Sabina saltuaria at lower, middle and upper altitude of two contrasting slopes in Sergyemla Mountain, southeast Tibet. Seedling and sapling age structure of A. georgei var. smithii was analyzed further. Seedling density of both species, as well as sapling density of S. saltuaria, showed a declining trend as elevation increased. Sapling density of A. georgei var. smithii was somewhat higher at middle altitude than other positions. The frequency of old-aged A. georgei var. smithii seedlings/saplings (age >10 year) was the lowest at the highest altitude and tended to increase with the declining elevation. The results indicate that the higher density of seedling and sapling in high-altitude might be attributed to better soil moisture availability and solar insolation than in the mid- and low-altitudes during the growth season. Yet confined by other environmental factors, A. georgei var. smithii seedlings in high-altitude suffer from lower survival rate and lower possibility to grow tall compared with those in mid- and low-altitudes.  相似文献   

7.
Most major rivers in the southwestern United States have been hydrologically altered to meet human needs. Altered hydrological regimes have been associated with declines in native riparian forests. Today, many riparian areas have little or no regeneration of native riparian species and are now dominated by exotic Saltcedar (Tamarix chinensis Lour.). Success of riparian restoration efforts at least partially depends on the number of seedlings surviving the first growing season. Seedling survival is influenced by many abiotic and biotic factors including competition from other plants and available soil moisture, which is partially dependent on soil texture. In this study, we evaluated the relative importance of four soil categories (sandy loam, loam, silt, and clay), rate of soil moisture decline, salinity, beginning‐ and end‐season Saltcedar density, initial Cottonwood (Populus deltoides Marshall subsp. wislizenii (Wats.) Eckenw.) seedling density, percent vegetation cover by potential dominant competitors Pigweed (Amaranthus L.) and Barnyard grass (Echinochloa crusgalli L., Beauv.), and average total vegetation height to Cottonwood seedling survival. Factors influencing seedling survival differed among the four soil types. Rate of moisture decline was important in sandy soils, whereas vegetation height influenced seedling survival in loamy soils. Overall, models of seedling survival in all the four soil types indicated rate of moisture decline as the single most important variable influencing Cottonwood survival. High initial densities of Saltcedar were correlated to higher survival in Cottonwood seedlings. Therefore, it is important to identify soil texture and understand soil moisture decline rates when proposing riparian Cottonwood restoration.  相似文献   

8.
Summary Previous studies have shown that the shrub, Baccharis pilularis spp. consanguinea, invades annual grasslands in the San Francisco Bay region in a sporadic manner. Invasion was shown to be positively correlated with the amount of rainfall received in the spring. Here we show that, although Baccharis seeds are dispersed near the beginning of the winter rainy season, seedling root growth is extremely slow until spring. At this time, cessation of the winter rains and transpiration by the grassland annuals results in drying of the upper soil profile. We conclude that establishment of Baccharis seedlings at our study site usually fails because seedling roots cannot reach depths of permanently moist soil, below the depth of the grass roots, before this soil drought occurs. The continuation of rains into the warmer spring months provides a window of time when favorable temperatures and adequate soil moisture allow shrubs to establish.  相似文献   

9.
Kennedy PG  Sousa WP 《Oecologia》2006,148(3):464-474
Competition and facilitation are both considered major factors affecting the structure of plant assemblages, yet few studies have quantified positive, negative, and net effects simultaneously. In this study, we investigated the positive, negative, and net effects of tree saplings on the encroachment of two tree species, Douglas fir (Pseudotsuga menziesii) and tanoak (Lithocarpus densiflora), into a coastal California grassland. The study involved three components: sampling the spatial distributions of P. menziesii and L. densiflora in the grasslands, a field experiment examining seedling survival in different grassland environments, and a greenhouse experiment examining the effects of soil moisture on early seedling performance. The field experiment was conducted over a 2-year period, using Pseudotsuga in 2002 and both species in 2003. Seedlings were separated into four treatment groups: those planted in open grassland, in shaded grassland, under artificial (plastic) conifer saplings, and under natural Pseudotsuga saplings. Air temperature, relative humidity, soil moisture, incident radiation levels and fog water inputs were measured for each treatment group in 2003. In the greenhouse experiment, Pseudotsuga and Lithocarpus seedlings were grown for 13 weeks in watering treatments simulating the summer soil moisture conditions of the open grasslands and under Pseudotsuga saplings. Surveys of naturally established seedlings found that Lithocarpus occurred only under Pseudotsuga saplings, while most Pseudotsuga seedlings were located near but not directly under conspecific saplings. In the field experiment, positive effects of tree saplings were much larger than negative effects, resulting in strong net facilitation of seedling establishment. Survival for both species was always higher under the plastic and live trees than in the open or shade plots. The primary mechanism facilitating seedling survival appeared to be increased soil moisture caused by input of fog precipitation coupled with reduced microsite evaporation. The greenhouse experiment further showed that soil moisture strongly affected seedling performance, with both species having much higher photosynthetic rates in the higher moisture treatment. In the lower moisture treatment, Pseudotsuga seedlings had higher photosynthetic rates and stomatal conductance than Lithocarpus, suggesting they may be able to better tolerate the environmental conditions found in the open grasslands. Our combined results suggest that rate and patterning of woody plant encroachment can be strongly influenced by facilitation and that fog precipitation may play a key role in plant interactions.  相似文献   

10.
Germinable seed densities in the surface (0–10 cm) soil of pasture communities growing at Lansdown, near Townsville, were measured during the late dry season before the first germinating rain and again during the following wet season after germination but before the input of new seed. Seedlings emerging in the field were counted at approximately weekly intervals during this period to determine emergence patterns. Twelve communities were sampled in 1980–81 and six were re-sampled in 1981–82. During the late dry season germinable seed densities ranged from 5000 to 40 000 seeds m-2. Seeds of the introduced legume, Stylosanthes hamata, were present in all pastures. There were many seeds of annual grasses (Digitaria ciliaris and Brachiaria miliiformis) and sedges (Cyperus and Fimbristylis spp.) but only few seeds of perennial grasses (both native and introduced). Soil seed densities were much lower during the wet season than during the preceding dry season, particularly for the grasses. Emergence commenced and approximately 70% of all seedlings emerged on the first major rainfall of the wet season. The subsequent emergence pattern varied between years. In 1980–81 there was a gradual and continuous increase in seedling numbers under the continuously moist conditions which prevailed. In 1981–82 further emergence occurred in discrete events related to rainfall and intervening dry periods. Maximum seedling densities exceeded 34 000 seedlings m-2 including 29 000 grass seedlings (mainly annual species). The implications of these results for species survival and pasture composition are discussed.  相似文献   

11.
Question: Are the recruitment patterns of deliberately introduced wildflower species influenced by cutting frequencies and disturbance treatments? To what extent do these different treatments affect productivity and sward structure of an agriculturally improved grassland? Location: A mesic lowland grassland near Göttingen, Lower Saxony, Germany. Methods: Recruitment success of eight sown wildflower species was studied in a permanent grassland treated by a factorial combination of different pre‐sowing cutting intervals (1, 3 or 9 wk), post‐sowing cutting intervals (1,3 or 9 wk) and disturbance (control, harrowing, removal of sward). Seedling emergence and survival, biomass production and sward structure were followed over two years. Results: For most species seedling emergence was highest in the harrowing treatment. The complete sward removal did not further increase seedling emergence. Seedling survival was strongly influenced by the post‐sowing cutting frequency with highest mortality in the 9 wk cutting interval compared to one and 3 wk cutting intervals. Annual dry matter yield varied between 4.4, 5.9 and 9.4 t.ha‐1 in the 1,3 and 9 wk pre‐sowing cutting treatment, respectively. In June, when the seeds were sown, the tiller number of the 1 wk cut plots was twice as high as for the 9 wk cut plots and five times higher than in the harrowing treatment. Conclusions: Disturbance by harrowing provided the optimal environmental cues to trigger germination, whereas seedling survival was facilitated by increased light penetration due to frequent cutting. The investigation revealed the overriding importance of frequent standing crop removal in the early phase of seedling establishment on agriculturally improved grassland.  相似文献   

12.
《Acta Oecologica》1999,20(3):219-224
Information concerning the occurrence of very young (1- to 10-year-old) tree seedlings in the alpine treeline ecotone is rare. Seedling occurrence of the dominant conifers Picea engelmannii and Abies lasiocarpa was measured in the treeline ecotone of the Medicine Bow Mountains, Wyoming (central Rocky Mountains, USA), an area composed of elongated tree islands separated by open meadows (ribbon forest) that grade into the closed forest. No seedlings were found on the windward sides of tree islands, while a mean of 0.6 seedlings.m–2 occurred on the leeward (downward) sides. These values compared to the 4.2 seedlings.m–2 in the closed forest. In addition, a strong correspondence was found between snowpack depth and seedling abundance, with depths that were either too shallow (< 0.5 m) or too deep (> 1.5 m) associated with fewer or no seedlings. A. lasiocarpa seedlings made up much less of the overall seedling population in the ribbon forest (6 %) than in the closed forest (22 %). Seedling establishment in this portion of the alpine treeline ecotone appears to be occurring at a low rate that differs between the two dominant species and may be strongly influenced by wind-driven snow accumulation patterns.  相似文献   

13.
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first‐year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland‐forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long‐term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late‐season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present‐day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue.  相似文献   

14.
Rodent seed predation and seedling recruitment in mesic grassland   总被引:11,自引:0,他引:11  
Seedling recruitment of two grasses (Arrhenatherum elatius and Festuca rubra) and two herbs (Centaurea nigra and Rumex acetosa) was measured in areas with and without rodents to which seeds of each species were sown at three seed densities (1000, 10,000 and 50,000 seeds m−2) in two seasons (spring and autumn 1995). Seed removal was measured for 10-day periods and the fate of seedlings was followed for 15 months after sowing. The proportion of seed removed ranged from 6 to 85% and increased with increasing seed density for each species. Rodents had no effect on seedling emergence or survival in the spring sowing. In the autumn sowing, rodents reduced seedling emergence of all four species sown at 1000 and 10,000 seeds m−2 but had no impact at 50,000 seeds m−2, presumably because of microsite limitation. We suggest the difference between spring and autumn arose because emergence was seed limited in autumn but microsite limited in spring; microsite availability was higher in autumn because a summer drought killed plants, reduced plant biomass and opened up the sward. Fifteen months after the autumn sowing, fewer A. elatius and C. nigra seedlings survived on plots exposed to rodents. This result reflected not only the reduced seedling emergence but also increased seedling mortality (seedling herbivory) in sites exposed to rodents. In contrast, F. rubra and R.acteosa showed density-dependent seedling survival which compensated for initial differences in seedling emergence, so that no effect of rodents remained after 15 months. The results suggest that rodent seed predation and seedling herbivory exert strong effects on seedling recruitment of A.elatius and C. nigra when recruitment conditions are favourable (conditions that lead to high microsite availability) and may contribute to both species being maintained at low densities in the grassland. The results also demonstrate that highly significant impacts of rodent seed predation at the seedling emergence stage can disappear by the time of plant maturation. Received: 2 March 1998 / Accepted: 28 September 1998  相似文献   

15.
Seedling establishment of a perennial,Veronicastrum sibiricum ssp.japonicum colonizing at 1,600 m altitude in Nikko National Park was studied for two years. About half of the first-year seedlings died during the growing season and 45–74 per cent of the seedlings surviving the first summer died during the following winter season. This winter mortality depended on the end-of-season size of the seedling in the previous autumn and was caused mainly by the absence of perennation buds. Seedlings which had emerged on bare ground attained larger size and had higher winter survival than seedlings in a mat of moss. Seedlings germinating in early season attained larger size and had higher probability of winter survival than seedlings germinating in later season.  相似文献   

16.
Following the recent decline in browsing and grazing pressures and changed fire regimes in Queen Elizabeth National Park, Uganda, Acacia thickets have encroached on grassland habitats important for grazing mammals. The objective of this research was to test experimentally the effects of fire behaviour, using simulated and natural fuel loading conditions, on A. sieberiana seedling and sapling regeneration. A high fire intensity (3200 kW m-1) in natural fuels stimulated high seedling emergence (172 seedlings m-2) compared to 6 seedlings m-2 without fire. Also a highly significant linear regression was established between percentage top-kill of seedlings and fire intensities. High fire intensities during late dry season fires were more effective in controlling sapling height growth than early dry season fires of low intensities. A conceptual diagram was developed to show the major factors and possible pathways leading to successful invasion by A. sieberiana into grassland openings of the savanna.  相似文献   

17.
Disturbance,drought and dynamics of desert dune grassland,South Africa   总被引:4,自引:0,他引:4  
Milton  S.J.  Dean  W.R.J. 《Plant Ecology》2000,150(1-2):37-51
A seven-year study of marked plants and plots in Stipagrostis ciliata (Desf.) de Winter dune grassland, in the arid (<100 mm yr–1) Bushmanland area of the Northern Cape province of South Africa, was designed to test the hypothesis that establishment of ephemeral plants, and recruitment of perennial grasses was dependent upon disturbances that reduced the density of living perennial grass tussocks. In 1989, eight 4 m2 plots were cleared of perennial vegetation by uprooting and removing all plants so as to resemble small-scale disturbances made by burrowing mammals or territorial antelope. The vegetation on the cleared plots and surroundings was monitored until 1996. Initial results supported our hypothesis. In wet years, when ephemeral plants were abundant, their average fresh mass was 2–3 times greater per unit area on the cleared plots than in control plots in adjacent, undisturbed grassland. Many Stipagrostis seedlings established in the cleared plots over the two years following clearing but were rare in adjacent areas among established conspecifics. However, a drought in 1992 (11 mm of rain over 12 months) lead to widespread mortality of the perennial grass, killing 56% (range 22–79%) of established tufts. High densities of Stipagrostis seedlings appeared following the drought-breaking rains in January 1993, both in the disturbed plots and in the surrounding `undisturbed' dune grassland. Ephemeral plants established in large numbers throughout the area during the high rainfall year of 1996 and were generally more numerous in the old disturbances than in control plots. Seven years after clearing the biomass of grass on the cleared plots was approximately 34% of the mass removed from the plots in 1989 whereas in the undisturbed grassland biomass was 66% of 1989 levels. Drought had little long-term effect on community composition, and Stipagrostis ciliata constituted 94–98% of plant community before and after drought. Cleared plots were recolonised by S. ciliata, but the contribution of other grass species increased by 6–9%. Synchronous recruitment following occasional drought-induced mortality can generate even-aged populations of the dominant desert dune grasses.  相似文献   

18.
Continued changes in climate are projected to alter the geographic distributions of plant species, in part by affecting where individuals can establish from seed. We tested the hypothesis that warming promotes uphill redistribution of subalpine tree populations by reducing cold limitation at high elevation and enhancing drought stress at low elevation. We seeded limber pine (Pinus flexilis) into plots with combinations of infrared heating and water addition treatments, at sites positioned in lower subalpine forest, the treeline ecotone, and alpine tundra. In 2010, first-year seedlings were assessed for physiological performance and survival over the snow-free growing season. Seedlings emerged in midsummer, about 5–8 weeks after snowmelt. Low temperature was not observed to limit seedling photosynthesis or respiration between emergence and October, and thus experimental warming did not appear to reduce cold limitation at high elevation. Instead, gas exchange and water potential from all sites indicated a prevailing effect of summer moisture stress on photosynthesis and carbon balance. Infrared heaters raised soil growing degree days (base 5 °C, p < 0.001) and August–September mean soil temperature (p < 0.001). Despite marked differences in vegetation cover and meteorological conditions across sites, volumetric soil moisture content (θ) at 5–10 cm below 0.16 and 0.08 m3 m?3 consistently corresponded with moderate and severe indications of drought stress in midday stem water potential, stomatal conductance, photosynthesis, and respiration. Seedling survival was greater in watered plots than in heated plots (p = 0.01), and negatively related to soil growing degree days and duration of exposure to θ < 0.08 m3 m?3 in a stepwise linear regression model (p < 0.0001). We concluded that seasonal moisture stress and high soil surface temperature imposed a strong limitation to limber pine seedling establishment across a broad elevation gradient, including at treeline, and that these limitations are likely to be enhanced by further climate warming.  相似文献   

19.
《Plant Ecology & Diversity》2013,6(3-4):307-318
Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated.

Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA.

Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt.

Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings.

Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.  相似文献   

20.
We evaluated the effects of moderate shade (43% vs. 100% of full sunlight) and irrigation with eutrophicated river water (daily vs. alternate-day watering) on growth and nitrogen economy of seedlings of three Mediterranean oak species, two evergreen (Quercus coccifera, Quercus ilex subsp. ballota) and a deciduous (Quercus faginea), grown in pots outdoors. Seedling biomass, N pool, N concentration and N losses by litter fall were measured at the beginning (March 2002) and end (November 2002) of a growing season. All species showed an increase of biomass and N pool under shade and/or high irrigation, while only Q. coccifera – from more arid regions – did the same under full sunlight and low irrigation. At the end of the experiment, biomass of the evergreens was higher in shade than in sun, and in high than in low irrigation, while Q. faginea – from more humid zones – responded to irrigation only. Shade-induced growth was accompanied by a decline in N concentration in the evergreens, but irrigation reduced N concentration only of Q. faginea. Shade, but not irrigation, reduced above-ground N loss. We conclude that both treatments differentially affected the evergreen and the deciduous oaks, probably due to differences in plant hydraulic and stomatal conductance. Although both treatments have similar effects on the growth of evergreens, they produced different effects on seedling N economy, which may have important consequences on future field seedling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号