首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fapy.dA is produced in DNA as a result of oxidative stress. Recently, this lesion and its C-nucleoside analogues were incorporated in chemically synthesized oligonucleotides at defined sites. The interaction of DNA containing Fapy.dA or nonhydrolyzable analogues with Fpg and MutY is described. Fpg efficiently excises Fapy.dA (K(m) = 1.2 nM, k(cat) = 0.12 min(-1)) opposite T. The lesion is removed as efficiently from duplexes containing Fapy.dA:dA or Fapy.dA:dG base pairs. Multiple turnovers are observed for the repair of Fapy.dA mispairs in a short period of time, indicating that the enzyme does not remain bound to the product duplex. MutY does not incise dA from a duplex containing this nucleotide opposite Fapy.dA, nor does it exhibit an increased level of binding compared to DNA composed solely of native base pairs. MutY also does not incise Fapy.dA when the lesion is opposite dG. These data suggest that Fapy.dA could be deleterious to the genome. Fpg strongly binds duplexes containing the beta-C-nucleoside analogue of Fapy.dA (beta-C-Fapy.dA) opposite all native nucleotides (K(D) < 27 nM), as well as the alpha-C-nucleoside (alpha-C-Fapy.dA) opposite dC (K(D) = 7.1 +/- 1.5 nM). A duplex containing a beta-C-Fapy.dA:T base pair is an effective inhibitor (K(I) = 3.5 +/- 0.3 nM) of repair of Fapy.dA by Fpg, suggesting the C-nucleoside may have useful therapeutic properties.  相似文献   

2.
Fapy.dG is produced in DNA as a result of oxidative stress. Under some conditions Fapy.dG is formed in greater yields than 8-oxodG from a common chemical precursor. Recently, Fapy.dG and its C-nucleoside analogue were incorporated in chemically synthesized oligonucleotides at defined sites. Like 8-oxodG, Fapy.dG instructs DNA polymerase to misincorporate dA opposite it in vitro. The interactions of DNA containing Fapy.dG or the nonhydrolyzable analogue with Fpg and MutY are described. Fpg excises Fapy.dG (K(M) = 2.0 nM, k(cat) = 0.14 min(-1)) opposite dC approximately 17-fold more efficiently than when mispaired with dA, which is misinserted by DNA polymerase in vitro. Fpg also prefers to bind duplexes containing Fapy.dG.dC or beta-C-Fapy.dG.dC compared to those in which the lesion is opposite dA. MutY incises dA when it is opposite Fapy.dG and strongly binds duplexes containing the lesion or beta-C-Fapy.dG. Incision from Fapy.dG.dA is faster than from dG.dA mispairs but slower than from DNA containing 8-oxodG opposite dA. These data demonstrate that Fapy.dG closely resembles the interactions of 8-oxodG with two members of the GO repair pathway in vitro. The similar effects of Fapy.dG and 8-oxodG on DNA polymerase and repair enzymes in vitro raise the question as to whether Fapy.dG elicits similar effects in vivo.  相似文献   

3.
Fapy.dG is produced in DNA as a result of oxidative stress from a precursor that also forms OxodG. Bypass of Fapy.dG in a shuttle vector in COS-7 cells produces G --> T transversions slightly more frequently than does OxodG (Kalam, M. A., et al. (2006) Nucleic Acids Res. 34, 2305). The effect of Fapy.dG on replication in Escherichia coli was studied by transfecting M13mp7(L2) bacteriophage DNA containing the lesion within the lacZ gene in 4 local sequence contexts. For comparison, experiments were carried out side-by-side on OxodG. The efficiency of lesion bypass was determined relative to that of a genome containing native nucleotides. Fapy.dG was bypassed less efficiently than OxodG. Bypass efficiency of Fapy.dG and OxodG increased modestly in SOS-induced cells. Mutation frequencies at the site of the lesions in the originally transfected genomes were determined using the REAP assay (Delaney, J. C., Essigmann, J. M. (2006) Methods Enzymol. 408, 1). G --> T transversions were the only mutations observed above background when either Fapy.dG or OxodG was bypassed. OxodG mutation frequencies ranged from 3.1% to 9.8%, whereas the G --> T transversion frequencies observed upon Fapy.dG bypass were T transversions.  相似文献   

4.
Fapy.dG and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) are formed in DNA by hydroxyl radical damage. In order to study replication past these lesions in cells, we constructed a single-stranded shuttle vector containing the lesion in 5'-TGT and 5'-TGA sequence contexts. Replication of the modified vector in simian kidney (COS-7) cells showed that Fapy.dG is mutagenic inducing primarily targeted Fapy.G-->T transversions. In the 5'-TGT sequence mutational frequency of Fapy.dG was approximately 30%, whereas in the 5'-TGA sequence it was approximately 8%. In parallel studies 8-oxo-dG was found to be slightly less mutagenic than Fapy.dG, though it also exhibited a similar context effect: 4-fold G-->T transversions (24% versus 6%) occurred in the 5'-TGT sequence relative to 5'-TGA. To investigate a possible structural basis for the higher G-->T mutations induced by both lesions when their 3' neighbor was T, we carried out a molecular modeling investigation in the active site of DNA polymerase beta, which is known to incorporate both dCTP (no mutation) and dATP (G-->T substitution) opposite 8-oxo-G. In pol beta, the syn-8-oxo-G:dATP pair showed greater stacking with the 3'-T:A base pair in the 5'-TGT sequence compared with the 3'-A:T in the 5'-TGA sequence, whereas stacking for the anti-8-oxo-G:dCTP pair was similar in both 5'-TGT and 5'-TGA sequences. Similarly, syn-Fapy.G:dATP pairing showed greater stacking in the 5'-TGT sequence compared with the 5'-TGA sequence, while stacking for anti-Fapy.G:dCTP pairs was similar in the two sequences. Thus, for both lesions less efficient base stacking between the lesion:dATP pair and the 3'-A:T base pair in the 5'-TGA sequence might cause lower G-->T mutational frequencies in the 5'-TGA sequence compared to 5'-TGT. The corresponding lesions derived from 2'-deoxyadenosine, Fapy.dA and 8-oxo-dA, were not detectably mutagenic in the 5'-TAT sequence, and were only weakly mutagenic (<1%) in the 5'-TAA sequence context, where both lesions induced targeted A-->C transversions. To our knowledge this is the first investigation using extrachromosomal probes containing a Fapy.dG or Fapy.dA site-specifically incorporated, which showed unequivocally that in simian kidney cells Fapy.G-->T substitutions occur at a higher frequency than 8-oxo-G-->T and that Fapy.dA is very weakly mutagenic, as is 8-oxo-dA.  相似文献   

5.
Bypass of the configurationally stable analogue (beta-C-Fapy x dG) of the formamidopyrimidine lesion derived from 2'-deoxyguanosine oxidation (Fapy x dG) was studied in vitro and in Escherichia coli. The exonuclease deficient Klenow fragment of E. coli DNA polymerase I (Klenow exo(-)) misincorporated dA most frequently opposite beta-C-Fapy x dG, but its efficiency was <0.2% of dC insertion. Klenow exo(-) fidelity was enhanced by the enzyme's high selectivity for extending duplexes only when dC was opposite beta-C-Fapy x dG. The expectations raised by these in vitro data were realized when beta-C-Fapy x dG replication was studied in E. coli by transfecting M13mp7(L2) bacteriophage DNA containing the nucleotide analogue within the lacZ gene in 4 local sequence contexts. The bypass efficiency of beta-C-Fapy x dG varied between 45% and 70% compared to a genome containing only native nucleotides. Mutation frequencies at the site of the lesions in the originally transfected genomes were determined using the REAP assay [Delaney, J. C.; Essigmann, J. M. Methods Enzymol.2006, 408, 1]. The levels of mutations could not be distinguished between those observed when genomes containing native nucleotides were replicated, indicating that the mutagenicity of beta-C-Fapy x dG was <1%. These data and previous reports indicate that beta-C-Fapy x dG is a good model of Fapy x dG in E. coli. In addition, these results and the previous report of beta-C-Fapy x dG binding to the base excision repair protein formamidopyrimidine glycosylase suggest that this analogue could be useful as a DNA repair inhibitor.  相似文献   

6.
Proper maintenance of the genome is of great importance. Consequently, damaged nucleotides are repaired through redundant pathways. We considered whether the genome is protected from formamidopyrimidine nucleosides (Fapy•dA, Fapy•dG) via a pathway distinct from the Escherichia coli guanine oxidation system. The formamidopyrimidines are produced in significant quantities in DNA as a result of oxidative stress and are efficiently excised by formamidopyrimidine DNA glycosylase. Previous reports suggest that the formamidopyrimidine nucleosides are substrates for endonucleases III and VIII, enzymes that are typically associated with pyrimidine lesion repair in E.coli. We investigated the possibility that Endo III and/or Endo VIII play a role in formamidopyrimidine nucleoside repair by examining Fapy•dA and Fapy•dG excision opposite all four native 2′-deoxyribonucleotides. Endo VIII excises both lesions more efficiently than does Endo III, but the enzymes exhibit similar selectivity with respect to their action on duplexes containing the formamidopyrimidines opposite native deoxyribonucleotides. Fapy•dA is removed more rapidly than Fapy•dG, and duplexes containing purine nucleotides opposite the lesions are superior substrates compared with those containing formamidopyrimidine–pyrimidine base pairs. This dependence upon opposing nucleotide indicates that Endo III and Endo VIII do not serve as back up enzymes to formamidopyrimidine DNA glycosylase in the repair of formamidopyrimidines. When considered in conjunction with cellular studies [J. O. Blaisdell, Z. Hatahet and S. S. Wallace (1999) J. Bacteriol., 181, 6396–6402], these results also suggest that Endo III and Endo VIII do not protect E.coli against possible mutations attributable to formamidopyrimidine lesions.  相似文献   

7.
The activity of prokaryotic and mammalian thymine glycol (Tg) glycosylases including Escherichia coli endonuclease III (Endo III) and endonuclease VIII (Endo VIII) and mouse Endo III homologue (mNth1) for formamidopyrimidine (Fapy) has been investigated using defined oligonucleotide substrates. 2, 6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine, a methylated Fapy derived from guanine, was site specifically incorporated in the oligonucleotide. The substrates containing Fapy:N pairs (N = A, G, C, T) as well as a Tg:A pair, a physiological substrate of Endo III, Endo VIII, and mNth1, were treated by the enzymes and nicked products were quantified by gel electrophoresis. The activity of Endo III and Endo VIII for Fapy varied markedly depending on the paired base, being the highest with G (activity relative to Tg = 0. 55 (Endo III) and 0.41 (Endo VIII)) and the lowest with C (0.05 (Endo III) and 0.06 (Endo VIII)). In contrast, mNth1 recognized all Fapy pairs equally well and the activity was comparable to Tg. The results obtained in the nicking assay were further substantiated by the analysis of the Schiff base intermediate using NaBH(4) trapping assays. These results indicate that Escherichia coli and mammalian Tg glycosylases have a potential activity to recognize Fapy. However, as demonstrated for Fapy:C pairs, their distinctive activities implicate unequal participation in the repair of Fapy lesions in cells.  相似文献   

8.
We report the purification of endonuclease G (Ruiz-Carrillo, A., and Renaud, J. (1987) EMBO J. 6, 401-407) from calf thymus nuclei and whole tissue. The enzyme has been enriched 29,000-fold, and the activity was unambiguously identified with a 26-kDa protein after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native nuclease behaves as a 50-kDa species by gel filtration, suggesting that it is composed of two subunits, presumably identical. In terms of absolute amounts, endonuclease G (endo G) is a nuclear enzyme although it was also detected in purified mitochondria. Endo G is highly specific for (dG)n.(dC)n tracts in DNA, nicking either strand of relaxed substrates with similar kinetics. The sensitivity of the homopolymer tracts is proportional to their length (from n = 8 to 29), insofar as the flanking sequences are constant. However, the overall rate of cleavage is influenced by the composition of the flanking DNA. Minor cleavage sites contain shorter (dG)n.(dC)n clusters (n = 3-7). Endo G efficiently cleaves (dC)n but not (dG)n runs in single-stranded DNA, suggesting that it may recognize an asymmetric strand conformation of the homopolymer tracts. Endo G does not recognize other homo(co)-polymer sequences or cruciform structures in DNA.  相似文献   

9.
BACKGROUND: We have previously proposed that deamination of cytosine to uracil at sites within the immunoglobulin loci by activation-induced deaminase (AID) triggers antibody diversification. The pattern of diversification (phase 1 or 2 hypermutation, gene conversion, or switch recombination) is viewed as depending on the mode of resolution of the dU/dG lesion. A major resolution mode involves excising the uracil, an activity that at least four different enzymes can accomplish in the mouse. RESULTS: Deficiency in UNG uracil-DNA glycosylase alone is sufficient to distort the pathway of hypermutation in mice. In ung(-/-) animals, mutations at dC/dG pairs are dramatically shifted toward transitions (95%), indicating that the generation of abasic sites (which can induce transversions) has been inhibited. The pattern of substitutions at dA/dT pairs is unaffected. Class-switch recombination is substantially, but not totally, inhibited. CONCLUSIONS: The results provide strong support for the DNA deamination model for antibody diversification with respect to class-switching as well as hypermutation and, in the context of this model, suggest that (i) UNG is the major mouse DNA glycosylase responsible for processing the programmed dU/dG lesions within the immunoglobulin locus; (ii) the second (dA/dT-biased) phase of mutation is probably triggered by recognition of the initiating dU/dG lesion; and (iii) switch recombination largely proceeds via formation of an abasic site, although (iv) an UNG-independent pathway of switch recombination exists, which could reflect action by another uracil-DNA glycosylase but might alternatively be explained by a distinct pathway of resolution, for example, one involving MSH2/MSH6 recognition of the dU/dG lesion.  相似文献   

10.
Abasic sites are often referred to as noninstructive lesions. The C1'-oxidized abasic site (2-deoxyribonolactone, L) is produced by several DNA damaging agents, including gamma-radiolysis and the neocarzinostatin chromophore (NCS). The effects of a C1'-oxidized abasic site incorporated at a defined site in single-stranded plasmid were examined in SOS polymerase-proficient and -deficient Escherichia coli. For comparison, experiments utilizing plasmids containing an abasic site (AP) were carried out side by side. In contrast to plasmid containing AP, dA and dG were incorporated most often when plasmid containing L was replicated. The ratio of dG:dA incorporation depended upon local sequence and varied from 0.9 to 2.2. High levels of translesion incorporation of dA are consistent with previous observations that treatment of DNA with the neocarzinostatin chromophore resulted in large amounts of G.C --> A.T transitions [Povirk and Goldberg (1986) Nucleic Acids Res. 14, 1417] and support the proposal that L is the source of these mutations. Both abasic lesions were 100% lethal in triple knockout cells lacking pol II, pol IV, and pol V. Analysis of translesion synthesis in repair-deficient cells revealed that pol V played a significant role in replication of L and AP. Significant levels of -1 frameshifts were formed in 5'-d(CL) sequences in the presence of pol V and were the exclusive product in pol V-deficient cells. Frameshift products were not formed when the nucleotide on the 5'-side of L was either dT or dG. Deleting pol II or pol IV had only modest effects on replication of L-containing plasmid but significantly decreased the amount of -1 frameshift product formed from an AP lesion. Experiments carried out side by side using otherwise identical plasmids containing an AP site illustrate the distinct properties of these two abasic lesions and that neither should be thought of as noninstructive.  相似文献   

11.
Solution structural studies have been undertaken on the aminopyrene-C(8)-dG ([AP]dG) adduct in the d(C5-[AP]G6-C7). d(G16-A17-G18) sequence context in an 11-mer duplex with dA opposite [AP]dG, using proton-proton distance and intensity restraints derived from NMR data in combination with distance-restrained molecular mechanics and intensity-restrained relaxation matrix refinement calculations. The exchangeable and nonexchangeable protons of the aminopyrene and the nucleic acid were assigned following analysis of two-dimensional NMR data sets on the [AP]dG.dA 11-mer duplex in H2O and D2O solution. The broadening of several resonances within the d(G16-A17-G18) segment positioned opposite the [AP]dG6 lesion site resulted in weaker NOEs, involving these protons in the adduct duplex. Both proton and carbon NMR data are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue in the adduct duplex. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs and is in contact with dC5, dC7, dG16, dA17, and dG18 residues that form a hydrophobic pocket around it. The intercalated AP ring of [AP]dG6 stacks over the purine ring of dG16 and, to a lesser extent dG18, while the looped out deoxyguanosine ring of [AP]dG6 stacks over dC5 in the solution structure of the adduct duplex. The dA17 base opposite the adduct site is not looped out of the helix but rather participates in an in-plane platform with adjacent dG18 in some of the refined structures of the adduct duplex. The solution structures are quite different for the [AP]dG.dA 11-mer duplex containing the larger aminopyrene ring (reported in this study) relative to the previously published [AF]dG.dA 11-mer duplex containing the smaller aminofluorene ring (Norman et al., Biochemistry 28, 7462-7476, 1989) in the same sequence context. Both the modified syn guanine and the dA positioned opposite it are stacked into the helix with the aminofluorene chromophore displaced into the minor groove in the latter adduct duplex. By contrast, the aminopyrenyl ring participates in an intercalated base-displaced structure in the present study of the [AP]dG.dA 11-mer duplex and in a previously published study of the [AP]dG.dC 11-mer duplex (Mao et al., Biochemistry 35, 12659-12670, 1996). Such intercalated base-displaced structures without hydrogen bonding between the [AP]dG adduct and dC or mismatched dA residues positioned opposite it, if present at a replication fork, may cause polymerase stalling and formation of a slipped intermediate that could produce frameshift mutations, the most dominant mutagenic consequence of the [AP]dG lesion.  相似文献   

12.
MutY participates in the repair of oxidatively damaged DNA by excising adenine from dA:dG and dA:8-oxodG mispairs; this DNA glycosylase can be cross-linked to DNA through Lys-142. We have investigated the properties of a mutant protein in which Lys-142 is replaced by glutamine. Using the rifampicin resistance assay, MutY K142Q was shown to complement the mutY mutator phenotype to the same extent as wild-type MutY. Although MutY K142Q does not form a Schiff base with DNA, it retains in part the catalytic properties of wild-type enzyme. The K142Q mutation selectively impairs processing of DNA containing dA:dG mispairs but not that of substrates containing dA:8-oxodG. Decreased substrate processing is mediated primarily via an increase in K(D) (21.8 nM for MutY vs 298 nM for MutY K142Q). The catalytic constant, measured in single turnover experiments, was not significantly affected. At pH < 6.0, the activity of MutY K142Q on the dA:dG mispair was approximately the same as for wild-type protein, suggesting that a dG(anti) to dG(syn) transition is effected at low pH. The three-dimensional structure of the catalytic domain of MutY K142Q, determined at 1.35 A resolution, shows no significant differences between wild-type and mutant protein, indicating that Lys-142 is not critical for maintaining the conformation of MutY. We conclude that Lys-142 recognizes guanine in the dA:dG mispair, helping position this residue in the syn conformation and facilitating binding of substrate DNA. Lys-142 is not involved in the catalytic steps of base excision.  相似文献   

13.
A DNA glycosylase that excises, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) from double stranded DNA has been purified 28,570-fold from the yeast Saccharomyces cerevisiae. Gel filtration chromatography shows that yeast Fapy DNA glycosylase has a molecular weight of about 40 kDa. The Fapy DNA glycosylase is active in the presence of EDTA, but is completely inhibited by 0.2 M KCl. Yeast Fapy DNA glycosylase does not excise N7-methylguanine, N3-methyladenine or uracil. A repair enzyme for 7,8-dihydro-8-oxoguanine (8-OxoG) co-purifies with the Fapy DNA glycosylase. This repair activity causes strand cleavage at the site of 8-OxoG in DNA duplexes. The highest rate of incision of the 8-OxoG-containing strand was observed for duplexes where 8-OxoG was opposite guanine. The mode of incision at 8-OxoG was not established yet. The results however suggest that the Fapy- and 8-OxoG-repair activities are associated with a single protein.  相似文献   

14.
Using the technique of pulse radiolysis it has been demonstrated that the interaction of SO4.- with deoxynucleosides (k approximately less than 2 X 10(8)-2.3 X 10(9) dm3 mol-1 s-1) in aqueous solution at pH 7.0 results in the formation of the corresponding one-electron oxidized radicals which either deprotonate or hydrate to yield OH adducts. Based upon the ease of oxidation of the deoxynucleosides, dG, dA, dC, dT, by SO4.-, the apparent redox potentials are in the order dG much greater than dA approximately equal to dC greater than dT. With the exception of deoxyuridine, the deoxynucleoside radicals produced on interaction with SO4.- have been shown to have oxidizing properties based upon the interactions with tetranitromethane and the nitroxyls, TMPN and NPPN. The deoxynucleoside radicals (dG, dA and dC) do not interact with oxygen (k less than 10(6) dm3 mol-1 s-1) in contrast to the interaction observed with the thymidine radical (k = 2.5 X 10(7) dm3 mol-1 s-1). The implications of these findings are presented in terms of the properties of the discussed radicals as relating to those of potential DNA base radicals (positive centres) produced by direct energy deposition within DNA. The use of SO4.- to mimic, to some extent, the effects of direct energy deposition in DNA may assist in our understanding of the resulting molecular processes relevant to radiobiological studies.  相似文献   

15.
Proton NMR studies are reported on the complementary d(C-A-T-G-G-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dG 9-mer duplex), which contains exocyclic adduct 1,N6-ethenodeoxyadenosine positioned opposite deoxyguanosine in the center of the helix. The present study focuses on the alignment of dG5 and epsilon dA14 at the lesion site in the epsilon dA.dG 9-mer duplex at neutral pH. This alignment has been characterized by monitoring the NOEs originating from the NH1 proton of dG5 and the H2, H5, and H7/H8 protons of epsilon dA14 in the central d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment of the epsilon dA.dG 9-mer duplex. These NOE patterns establish that epsilon dA14 adopts a syn glycosidic torsion angle that positions the exocyclic ring toward the major groove edge while all the other bases including dG5 adopt anti glycosidic torsion angles. We detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment which establish formation of right-handed helical conformations on both strands and stacking of the dG5(anti).epsilon dA14(syn) pair between stable dG4.dC15 and dG6.dC13 pairs. The energy-minimized conformation of the central d(G4-G5-G6).d(C13-epsilon A14-C15) segment establishes that the dG5(anti).epsilon dA14(syn) alignment is stabilized by two hydrogen bonds from the NH1 and NH2-2 of dG5(anti) to N9 and N1 of epsilon dA14(syn), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Greenberg MM  Weledji YN  Kim J  Bales BC 《Biochemistry》2004,43(25):8178-8183
2-Deoxyribonolactone (L) and the C4'-oxidized abasic site (C4-AP) are produced by a variety of DNA-damaging agents. If not repaired, these lesions can be mutagenic. Exonuclease III and endonuclease IV are the major enzymes in E. coli responsible for 5'-incision of abasic sites (APs), the first steps in AP repair. Endonuclease III efficiently excises AP lesions via intermediate Schiff-base formation. Incision of L and C4-AP lesions by exonuclease III and endonuclease IV was determined under steady-state conditions using oligonucleotide duplexes containing the lesions at defined sites. An abasic lesion (AP) in an otherwise identical DNA sequence was incised by exonuclease III or endonuclease IV approximately 6-fold more efficiently than either of the oxidized abasic sites (L, C4-AP). Endonuclease IV incision efficiency of 2-deoxyribonolactone or C4-AP was independent of whether the lesion was opposite dA or dG. 2-Deoxyribonolactone is known to cross-link to endonuclease III (Hashimoto, M. (2001) J. Am. Chem. Soc. 123, 3161.). However, the C4-AP lesion is efficiently excised by endonuclease III. Oxidized abasic site repair by endonuclease IV and endonuclease III (C4-AP only) is approximately 100-fold less efficient than repair by exonuclease III. These results suggest that the first step of C4-AP and L oxidized abasic site repair will be the same as that of regular AP lesions in E. coli.  相似文献   

17.
Replacement of the furanose moiety of DNA with a cyclopentane ring produces a modified sugar analogue: Carbocyclic nucleic acid (CarNA). UV melting-temperature experiments demonstrate that the incorporation of 2'-deoxycarbaguanosine ((c)G) and 2'-deoxyaristeromycin ((c)A) of carbocyclic nucleosides into a DNA strand increases the stability of the CarNA/RNA hybrid. Circular Dichroism (CD) study indicates that the CarNA/RNA hybrid adopts an A-like conformation. To elucidate the molecular basis of the increased stability of the CarNA/RNA, the conformation of (c)G and (c)A were examined by (1)H NMR conformational analysis of (3)J(HH) coupling constants and ab initio molecular orbital (MO) calculations. These results show that the populations of N-type of (c)G and (c)A are higher than those of dG and dA, respectively, at different temperatures [For example, 37% (N%) of (c)G vs. 28%of dG, 36% (N%) of (c)A vs. 25% of dA at 278 K], which suggest that the cyclopentane rings of (c)G and (c)A prefer the N-type conformation in two-state N-S pseudorotional equilibrium in comparison with the furanose rings of dG and dA. The DeltaH degrees of (c)G (DeltaH degrees = - 0.43 kcal mol(-1)) and (c)A (DeltaH degrees = - 0.41kcal mol(-1)) are lower than that of dG (dG = - 1.8 kcal mol(-1)) and dA (dA = - 1.0 kcal mol(-1)), respectively, which suggest that the gauche effect in the (c)A and (c)G driving N-S pseudorotional equilibrium to S-type is reduced by replacement of the 4'-oxygen by a CH(2) group. These results suggest that the preferred N-type of the (c)G and (c)A leads to the A-like conformation, which contributes to the stability of CarNA/RNA hybrid.  相似文献   

18.
Oxidative damage to DNA generates aberrant guanine bases such as 2,6-diamino-4-hydroxy-formamido-pyrimidine (Fapy) and 7,8-dihydro-8-oxoguanine (8-oxoG). Although synthetic oligonucleotides containing a single 8-oxoG have been widely used to study enzymatic processing of this lesion, the synthesis of oligonucleotides containing Fapy as a unique lesion has not been achieved to date. In this study, an oligonucleotide containing a single 2,6-diamino-4-hydroxy-5-(N-methyl)formamido-pyrimidine (me-Fapy, a methylated derivative of Fapy) was prepared by a DNA polymerase reaction and the subsequent alkali treatment. The repair activity of Fpg and hOGG1 proteins were compared using oligonucleotide substrates containing me-Fapy and 8-oxoG.  相似文献   

19.
Oxidative damage to DNA produces abasic sites resulting from the formal hydrolysis of the nucleotides' glycosidic bonds, along with a variety of oxidized abasic sites. The C4'-oxidized abasic site (C4-AP) is produced by several DNA-damaging agents. This lesion accounts for approximately 40% of the DNA damage produced by bleomycin. The effect of a C4'-oxidized abasic site incorporated at a defined site in a template was examined on Klenow fragments with and without 3' --> 5' exonuclease activity. Both enzymes preferentially incorporated dA > dG > dC, T opposite C4-AP. Neither enzyme is able to extend the primer past the lesion. Experiments with regular AP sites in an otherwise identical template indicate that Klenow does not differentiate between these two disparate abasic sites. Extension of the primer by alternative polymerases pol II, pol II exo(-), pol IV, and pol V was examined. Pol II exo(-) was most efficient. Qualitative translesion synthesis experiments showed that pol II exo(-) preferentially incorporates T opposite C4-AP, followed in order by dG, dA, and dC. Thymidine incorporation opposite C4'-AP is distinct from the pol II exonuclease interaction with a regular AP site in an otherwise identical template. These in vitro experiments suggest that bypass polymerases may play a crucial role in survival of cells in which C4-AP is produced, and unlike a typical AP site, the C4-AP lesion may not follow the "A-rule". The interaction between bypass polymerases and a C4-AP lesion could explain the high levels of G:C --> T:A transversions in cells treated with bleomycin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号