首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To elucidate the osmotic adjustment characteristics of mangrove plants, inorganic ion and organic solute contents of intermediate leaves were investigated in 3-month-old Kandelia candel (L.) Druce seedlings during 45 days of NaCl treatments (0, 200, and 500 mM NaCl). The contents of Na+, Cl, total free amino acids, proline, total soluble sugars, pinitol and mannitol increased to different degree by salinity, whereas, K+ content decreased by salinity compared with control. NaCl treatment induced an increase of inorganic ion contribution while a decrease of organic solute contribution. It was concluded that accumulating a large amount of inorganic ions was used as the main osmotic adjustment mechanism under salinity treatment. However, accumulation of organic osmolytes might be considered to play much more important role in osmoregulation under severe salinity (500 mM NaCl) than under moderate salinity (200 mM NaCl), thus the damage caused by high toxic ions (Na+ and Cl) concentration in K. candel leaves could be avoided.  相似文献   

2.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

3.
Effects of NaCl on growth in vitro and contents of sugars, free proline and proteins in the seedlings and leaf explants of Nicotiana tabacum cv. Virginia were investigated. The fresh and dry mass of the seedlings decreased under salinity. These growth parameters in leaf explants decreased at 50 mM NaCl and increased up to 150 mM NaCl and then decreased at higher level of salinity. Free proline content in both seedlings and leaf explants increased and polysaccharide content decreased continuously with increasing of NaCl concentration. Reducing sugars, oligosaccharides, soluble sugars and total sugars contents in both seedlings and leaf explants decreased up to 150 mM NaCl and then increased at higher concentrations of NaCl.  相似文献   

4.
The influence of betaine aldehyde dehydrogenase (BADH) and salinity pretreatment on oxidative stress under cadmium (Cd) toxicity was investigated in rice cv. Xiushui 11 and its BADH-transgenic line Bxiushui 11. The results showed that plants previously treated with 4.25 and 8.5 mM NaCl, respectively, for 5 days each had higher Cd concentrations in both roots and shoots of the two rice genotypes compared with the controls. Malondialdehyde (MDA) content in both leaves and roots was increased by salinity pretreatment and was significantly lower in the salinity-pretreatment plants than in the controls when the plants were consequently exposed to Cd stress. Salinity pretreatment also increased proline content and the activities of superoxide dismutase (SOD) and peroxidase (POD) in both leaves and roots. It can be assumed that salinity pretreatment enhances the defensive ability of plants against oxidative stress through increasing activities of antioxidative enzymes. The BADH-transgenic line (Bxiushui 11) had lower Cd and MDA content, higher SOD and POD activities, and higher proline content than its wild type (Xiushui 11). The current results suggest that betaine, a product of BADH expression, improves the tolerance of rice plants to Cd stress through increasing the activities of antioxidative enzymes and osmoprotectant content.  相似文献   

5.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

6.
Intra-specific variations in nonstructural carbohydrates and free proline were determined in leaves, apices, roots, and maturing seeds of two salt-tolerant cultivars (CR and Kharchia-65) and one salt-sensitive cv. Ghods of spring wheat (Triticum aestivum L.) grown in sand culture at various levels of salinity (0, 100, 200, and 300 mM NaCl and CaCl2 at 5 : 1 molar ratio) under controlled environmental conditions. The levels of leaf, apex, and root ethanol-soluble carbohydrates, fructans, starch, and proline increased in line with elevating level of salinity in all three cultivars under investigation. The contents of proline, soluble and insoluble carbohydrates in the apex increased to levels exceeding those in the leaves and roots. Soluble carbohydrate content of salt-sensitive cv. Ghods was higher in the leaves, apices, and roots and lower in the maturing seeds than in the other cultivars at all levels of salinity except at 300 mM. The results show considerable variation in the amount of soluble, insoluble sugars, and proline among plant tissues and wheat genotypes in response to salinity. Higher soluble carbohydrates and fructan in leaves, roots and maturing seeds of stressed plants indicate that their accumulation may help plant to tolerate salinity. Salt-sensitive cv. Ghods accumulated less soluble sugars in the maturing seeds and higher soluble sugars in the apices, which might be used as an indicator in screening wheat genotypes for salinity tolerance.  相似文献   

7.
In order to evaluate the effects of nano Zn-Fe oxide and bio fertilizer on physiological traits, antioxidant activity and yield of wheat under salinity stress, a factorial experiment was conducted based on RCBD with three replications.Treatments were included salinity in three levels (no-salt, salinity 25 and 50 mM NaCl), four bio fertilizers levels (no bio fertilizer, seed inoculation by Azotobacter, Azosperilium, Pseudomonas) and nano oxide (without nano, application of nano Zn oxide, nano Fe oxide and nano Fe-Zn oxide 1.5 g/lit). Salinty stress decreased the chlorophyll-a, chlorophyll-b, total chlorophyll, photochemical efficiency of PSII and yield of wheat, whearas electrical conductivity, soluble sugars, proline content, and the activities of Catalase (CAT), Peroxidase (POD) and Polyphenol Oxidase (PPO) enzymes increased. Similar results were observed in CAT, POD and PPO activities due to inoculation by bio fertilizers and nano oxide. Maximum of soluble sugars and proline content were observed in the highest salinity level and application of Pseudomonas. Application of nano Zn-Fe oxide increased about 17.40% from grain yield in comparision with no application of nano oxide in the highest salinity level. Generally, it was conducted that bio fertilizer and nano oxide can be used as a proper tool for increasing wheat yield under salinity condition.  相似文献   

8.
盐胁迫对大米草幼苗某些生理指标的影响   总被引:3,自引:0,他引:3  
研究了大米草幼苗在不同培养盐度(0、20、30、50、100mmol/LNaCl)下,MDA、游离脯氨酸、可溶性糖、可溶性蛋白质含量以及保护酶(SOD、POD、CAT)活性等生理指标的变化情况。结果表明:保护酶(SOD、POD、CAT)活性在盐胁迫40d前逐渐上升且达显著差异。随着胁迫时间延长,MDA含量与CK相比逐渐降低。随着盐分胁迫浓度的增加及盐胁迫时间延长,大米草叶片中游离脯氨酸、可溶性糖、可溶性蛋白质含量呈上升趋势。在盐胁迫下,渗透调节物质的积累作用是大米草对盐胁迫的主要响应过程,其体内的抗氧化保护酶在此过程中也发挥了重要的作用。  相似文献   

9.
The comparative responses of young olive trees (Olea europaea L. cv “Chemlali”) to different NaCl salinity levels were investigated over 11 months. One-year-old own rooted plants were grown in 10-L pots containing sand and perlite mixture (1:3 v/v). Trees were subjected to three irrigation treatments: CP (control plants that were irrigated with fresh water); SS1 (salt stressed plants irrigated with water containing 100 mM NaCl) and SS2 plants (salt stressed plants irrigated with water containing 200 mM NaCl). Shoot elongation rate, relative water content, leaf water potential and net carbon dioxide exchange rates decreased significantly with increased NaCl salinity level. Under stressed conditions, the increase of Na+ and Cl ions in both leaves and roots was accompanied with that of proline and soluble sugars. The above results show that the accumulation of proline and sugars under stressed conditions could play a role in salt tolerance. The absence of toxicity symptoms under both stress treatments and the superior photosynthetic activity recorded in SS1-treated plants suggest that cv Chemlali is better able to acclimatize to 100 mM NaCl than at 200 mM NaCl. Our findings indicate that saline water containing 100 mM NaCl, the most available water in arid region in Tunisia, can be recommended for the irrigation of cv Chemlali in the arid south of Tunisia.  相似文献   

10.
The avens (Geum urbanum L.) seedlings were grown for 6 weeks until the expansion of five to six leaves and then exposed to salinity shock (300 mM NaCl in the nutrient medium) or to a gradual (within 4 days) increase in NaCl concentration from 100 to 400 mM. The dynamics of stress-dependent accumulation of Na+, Cl?, proline, and polyamines in leaves and roots was measured, together with activities of antioxidant enzymes, namely, superoxide dismutase (SOD) and guaiacol-dependent peroxidase occurring in soluble, ionically bound, and covalently bound forms. It is shown that avens plants can adapt to gradual salinization by mobilizing stressinducible protective mechanisms (accumulation of proline and spermine) and by activating constitutive enzyme systems (SOD and peroxidase).  相似文献   

11.
The effects of NaCl stress on growth, water status, contents of protein, proline, malondialdehyde (MDA), various sugars and photosynthetic pigments were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under NaCl (0, 100, 200, 300, 400, 500 and 600 mM) on Murashige and Skoog medium for 45 d. The shoot growth of both species increased under low NaCl concentration (100 mM) and then decreased with increasing NaCl concentrations. In contrast to S. persica, root length in S. europaea reduced steadily with an increase in salinity. Proline content in S. persica was higher than in S. europaea at most NaCl concentrations. Proline, reducing saccharide, oligosaccharide and soluble saccharide contents increased under salinity in both species. In contrast, contents of proteins and polysaccharides reduced in both species under salt stress. MDA content remained close to control at moderate NaCl concentrations (100 and 200 mM) and increased at higher salinities. MDA content in S. europaea was significantly higher than S. persica at higher salinities. Salt treatments decreased K+ and P contents in seedlings of both species. Significant reduction in contents of chlorophylls and carotenoids due to NaCl stress was also observed in seedlings of both species. Some differences appeared between S. persica and S. europaea concerning proteins profile. On the basis of the data obtained, S. persica is more salt-tolerant than S. europaea.  相似文献   

12.
The use of in vitro shoot cultures to evaluate osmotic and salt tolerance and the effects of salt and mannitol in the medium on proline and sugar accumulation were investigated in two poplar species, P. euphratica and P. alba cv. Pyramidalis × P. tomentosa. Shoot length, leaf number, whole plant dry weight, and the accumulation of proline and total soluble sugars in leaves were quantified after 2 weeks. All P. euphratica plantlets survived at all levels of mannitol and NaCl, while the mortality of P. alba cv. Pyramidalis × P. tomentosa increased both at the mannitol and the NaCl treatments. A significant increase in proline accumulation was observed in both young and mature P. euphratica leaves at 200 mM mannitol and above, and at 150 mM NaCl and above. The total soluble sugar content increased in young P. euphratica leaves at 250 mM NaCl; however, it decreased in the mature leaves. Similar increases of the total soluble sugar content were not seen in P. alba cv. Pyramidalis × P. tomentosa plants in response to either mannitol or NaCl treatment. Our results suggest that accumulated proline and sugars promote osmotic and salt tolerance. The effects of accumulated proline and total soluble sugars on leaves are discussed in relation to growth and osmotic adjustment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The present work addresses the importance of antioxidant, redox and energetic parameters in regulating salt-tolerance in Sesuvium portulacastrum. Experiments were conducted on 45 days old plants subjected to 250 and 1,000 mM NaCl stress for 2–8 days. Plants showed no significant change in growth parameters (shoot length, dry weight, and water content) at 250 mM NaCl as compared to control. However, growth of plants was significantly affected at 1,000 mM NaCl. The differential growth behaviour could be attributed to a greater decline in the energetic parameters (in terms of ratios of NADP/NADPH and ATP/ADP) at 1,000 mM NaCl than at 250 mM NaCl. The osmotic stress imposed to plants at 250 mM NaCl was presumably balanced by the accumulation of sodium ions (Na+), an energetically favorable process, and did not require an increased synthesis of proline. In contrast, to counter osmotic stress at 1,000 mM NaCl, plants accumulated Na+ as well as proline and were, therefore, energetically stressed. Further, the response of enzymatic and molecular antioxidants at 1,000 mM was either close to or even lower than that at 250 mM, which resulted in oxidative damage at 1,000 mM, particularly on longer durations. In conclusion, it is suggested that altered redox and energetic status of the plants could play a key role in mediating the tolerance of Sesuvium under salinity stress.  相似文献   

14.
The study was conducted to investigate the physiological effects of exogenous NO on potherb mustard (Brassica juncea Coss.) seedlings under salt stress. The plants were grown in Hogland nutrient solution for 15 d and treated with 150 mM NaCl, NO donor sodium nitropruside (SNP) and NO scavenger methylene blue (MB-1) for 4 d. The NaCl stress increased superoxide dismutase, peroxidase and ascorbate peroxidase activities and malondialdehyde (MDA) and free proline contents, and decreased soluble protein content. However, the application of exogenous NO limited the production of MDA and free proline, while markedly promoted SOD, POD and APX activity.  相似文献   

15.
The effects of NaCl (0, 50, 100, 150 and 200 mM) on growth, water relations, glycinebetaine, free proline, ion contents, stomata number and size of Kochia prostrata (L.) Schard were determined. Shoot and root fresh and dry matter, root and shoot length, relative growth rate, net assimilation rate, relative water content, water use efficiency, soluble sugars and glycinebetaine contents were not changed at low NaCl concentrations, but they were significantly decreased at 200 mM NaCl. The K+, Mg2+ and Ca2+ contents, water potential, chlorophyll a+b and carotenoides contents, and stomata number and size were reduced already at low concentrations of NaCl. In contrast, the Na+, Cl and proline contents increased several times with increasing NaCl concentration. Kochia prostrata is a salt tolerant species, the optimal growth of this plant occurred up to 150 mM NaCl. The mechanisms of salt tolerance in the plant may be balance among ion accumulation and production of glycinebetaine, proline, soluble sugars for maintenance of pressure potential.  相似文献   

16.
Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in Soybean   总被引:12,自引:3,他引:9  
The effects of different concentrations of NaCl on the activities of antioxidative enzymes in the shoots and roots of soybean (Glycine max [L.] Merr cv. Pershing) inoculated or not with an arbuscular mycorrhizal fungus, Glomus etunicatum Becker & Gerdemann, were studied. Furthermore, the effect of salt acclimated mycorrhizal fungi on the antioxidative enzymes in soybean plants grown under salt stress (100 mM NaCl) was investigated. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in the shoots of both mycorrhizal (M) and nonmycorrhizal (NM) plants grown under NaCl salinity. Salinity increased SOD activity in the roots of M and NM plants, but had no effect on CAT and polyphenol oxidase activities in the roots. M plants had greater SOD, POD and ascorbate peroxidase activity under salinity. Under salt stress, soybean plants inoculated with salt pre-treated mycorrhizal fungi showed increased SOD and POD activity in shoots, relative to those inoculated with the non pre-treated fungi.  相似文献   

17.
混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响   总被引:6,自引:0,他引:6  
为研究青山杨(Populus pseudo-cathayana × P. deltoides)对盐碱的适应能力,对青山杨2年生扦插苗进行不同盐度和碱度的28组胁迫处理.结果表明:随盐浓度增加,青山杨叶片的电解质外渗率、丙二醛和脯氨酸含量呈上升趋势,可溶性糖、SOD和POD活性先升后降.pH值升高使电解质外渗率、丙二醛和POD活性呈上升趋势,脯氨酸和可溶性糖含量先升后降,SOD活性上升趋势不明显.盐浓度低于100 mmol·L-1时,随pH值升高,各项生理指标的变化不明显,SOD具有较高的活性;盐浓度在200 mmol·L-1、pH 8.99以上时,其电解质外渗率在50%以上,POD活性和丙二醛含量大幅度增加,脯氨酸和可溶性糖含量下降,SOD活性较低.推断盐浓度>200 mmol·L-1、pH>8.99的盐碱条件不适宜青山杨的生长.  相似文献   

18.
To investigate the salt tolerance mechanisms, Aeluropus lagopoides as a halophytic plant was used. Plants were treated with 0, 150, 450, 600, and 750 mM NaCl and harvested at 0, 4, 8, and 10 days after treatment and 1 day and 1 week after recovery. Optimal growth, measured as fresh and dry weights, occurred at 150 mM NaCl, but it was suppressed by 450, 600, and 750 mM NaCl. Recovery significantly increased fresh and dry weights only in 750 mM NaCl-treated plants. Water content was decreased after NaCl treatment and increased after recovery. Na+ and proline contents and activity of superoxide dismutase (SOD) were increased after NaCl treatment and decreased after recovery in all treated plants. In contrast, K+ content and ascorbate peroxidase activity decreased after NaCl treatment and increased after recovery in all treated plants. Catalase (CAT) was activated only in 750 mM NaCl-treated plants. Total content of soluble protein was slightly changed after NaCl treatment. It was concluded that proline accumulation for osmotic adjustment, SOD activation for O2·− scavenging, and CAT activation at the higher level of salt stress to detoxify produced H2O2 were main A. lagopoides strategies under salt stress. A. lagopoides salt tolerance was not based on the restriction of Na+ uptake.  相似文献   

19.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

20.
外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响   总被引:5,自引:0,他引:5  
采用营养液栽培法,研究外源谷胱甘肽(GSH)对NaCl胁迫下番茄幼苗生长、根系活力、电解质渗透率和丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响,为利用外源物质减轻盐胁迫伤害提供理论依据。结果显示:(1)NaCl胁迫显著抑制了番茄幼苗的生长、根系活力和SOD、POD、CAT活性,提高了电解质渗透率及MDA、Pro、可溶性糖含量;(2)外源喷施GSH能够诱导NaCl胁迫下番茄幼苗叶片抗氧化酶SOD、POD、CAT活性上调,电解质渗透率及MDA含量下降,Pro和可溶性糖含量恢复至对照水平;(3)外源喷施还原型谷胱甘肽抑制剂(BSO)使NaCl胁迫下番茄幼苗的根系活力以及抗氧化酶SOD、POD、CAT活性下降,脯氨酸含量提高;(4)喷施GSH可诱导BSO和NaCl共处理番茄植株的根系活力、SOD、POD、CAT活性提高,MDA和Pro含量降低。研究表明,外源GSH可通过提高促进盐胁迫下番茄幼苗植株渗透调节能力及清除活性氧的酶促系统的防御能力、降低细胞膜脂过氧化程度、保护膜结构的完整性,从而有效缓解NaCl胁迫对番茄幼苗生长的抑制,提高其耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号