首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatic metabolism of 3-oxoandrost-4-ene-17 beta-carboxylic acid (etienic acid), a probable acidic catabolite of deoxycorticosterone, was investigated using rats prepared with an external biliary fistula. Metabolic products were identified by GC-MS after hydrolysis with beta-glucuronidase and by proton nuclear magnetic resonance after chromatographic purification of protected glucuronides. About 80% of the injected dose was secreted into bile in 20 hours. Three fully reduced etianic acids (3 alpha-hydroxy-5 alpha-, 3 beta-hydroxy-5 alpha-, 3 alpha-hydroxy-5 beta-androstan-17 beta-carboxylic acids) were identified as were several of their di- and trihydroxylated congeners. Glucuronides of these reduced and/or hydroxylated metabolites constituted over half of the recovered dose, with carboxyl-linked glucuronides predominating over 3-hydroxyl-linked glucuronides. The mode of glucuronidation correlated well with the ability of liver microsomes to form the corresponding compounds in vitro from the set of four 3,5-diastereomeric etianic acids.  相似文献   

2.
Milligram amounts of [3 beta-3H]lithocholic (3 alpha-hydroxy-5 beta-cholanoic) acid were administered by intravenous infusion to rats prepared with a biliary fistula. Analysis of sequential bile samples by thin-layer chromatography (TLC) demonstrated that lithocholic acid glucuronide was present in bile throughout the course of the experiments and that its secretion rate paralleled that of total isotope secretion. Initial confirmation of the identity of this metabolite was obtained by the recovery of labeled lithocholic acid after beta-glucuronidase hydrolysis of bile samples. For detailed analysis of biliary metabolites of [3H]lithocholic acid, pooled bile samples from infused rats were subjected to reversed-phase chromatography and four major labeled peaks were isolated. After complete deconjugation, the two major compounds in the combined first two peaks were identified as murideoxycholic (3 alpha, 6 beta-dihydroxy-5 beta-cholanoic) and beta-muricholic (3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoic) acids and the third peak was identified as taurolithocholic acid. The major component of the fourth peak, after isolation, derivatization (to the methyl ester acetate), and purification by high pressure liquid chromatography (HPLC), was positively identified by proton nuclear magnetic resonance as lithocholic acid 3 alpha-O-(beta-D-glucuronide). These studies have shown, for the first time, that lithocholic acid glucuronide is a product of in vivo hepatic metabolism of lithocholic acid in the rat.  相似文献   

3.
Capillary GLC-MS analysis of the free/sulfate/glucuronide bile acid fraction obtained from human cholestatic serum demonstrated the presence of 3-hydroxyandrostan-17 beta-carboxylic (etianic) and 3-hydroxybisnorcholanoic acids.  相似文献   

4.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

5.
Glycolithocholic acid and its sulfated derivative are major metabolites of the secondary bile acid lithocholic acid in man. Both compounds are known to induce cholestasis in experimental animals. We compared the effects of these endogenous hepatotoxins on bile production and biliary lipid composition in rats with chronic biliary drainage. The compounds were administered enterally at relatively low rates (5-50% of the rats' endogenous bile acid secretion in these experiments) to simulate enterohepatic circulation. Both compounds were substantially secreted into bile (more than 90% of dose); sulfated glycolithocholic acid unchanged and glycolithocholic acid after hepatic hydroxylation predominantly in the form of glyco-beta-muricholic acid (cf. Kuipers et al. (1986) Am. J. Physiol. 251, G189-G194). Neither glycolithocholic acid nor its sulfated derivative affected the biliary excretion of endogenous bile acids or bile flow in these experiments. In spite of this, phospholipid and cholesterol secretion were significantly reduced by sulfated glycolithocholic acid but were not altered by glycolithocholic acid. Phospholipid and cholesterol secretion rapidly decreased to 25 and 50% of their initial values, respectively, at biliary output rates of sulfated glycolithocholic acid up to 2 mumol/h, and did not further decrease when this output was increased to 6 mumol/h. Small unilamellar liposomes consisting of cholesterol, [Me-14C]choline-labeled phosphatidylcholine, phosphatidylserine and [3H]cholesteryl oleate in a 5:4:1:0.1 molar ratio were employed to label intrahepatic lipid pools. Administration of sulfated glycolithocholic acid slightly reduced bile acid synthesis from [3H]cholesteryl oleate, but significantly reduced the biliary secretion of [14C]phospholipid. Glycolithocholic acid did not affect the hepatic processing of liposomal lipids. It is concluded that sulfated glycolithocholic acid at low doses causes the uncoupling of biliary lipid secretion from that of bile acids, which might represent in initiating event in sulfated glycolithocholic acid hepatotoxicity.  相似文献   

6.
Guinea pig gallbladder bile contains chenodeoxycholic acid (62 +/- 5%), ursodeoxycholic acid (8 +/- 5%), and 7-ketolithocholic acid (30 +/- 5%). All three bile acids became labeled to the same specific activity within 30 min after [3H]cholesterol was injected into bile fistula guinea pigs. When a mixture of [3H]ursodeoxycholic acid and [14C]chenodeoxycholic acid was infused into another bile fistula guinea pig, little 3H could be detected in either chenodeoxycholic acid or 7-ketolithocholic acid. But, 14C was efficiently incorporated into ursodeoxycholic and 7-ketolithocholic acids. Monohydroxylated bile acids make up 51% and ursodeoxycholic acid 38% of fecal bile acids. After 3 weeks of antibiotic therapy, lithocholic acid was reduced to 6% of the total, but ursodeoxycholic acid (5-11%) and 7-ketolithocholic (15-21%) acid persisted in bile. Lathosterol constituted 19% of skin sterols and was detected in the feces of an antibiotic-fed animal. After one bile fistula guinea pig suffered a partial biliary obstruction, ursodeoxycholic and 7-ketolithocholic acids increased to 46% and 22% of total bile acids, respectively. These results demonstrate that chenodeoxycholic acid, ursodeoxycholic acid, and 7-ketolithocholic acid can all be made in the liver of the guinea pig.  相似文献   

7.
Sarcosine conjugated ursodeoxycholic acid (SUDC) was synthesized and its intestinal absorption and metabolism were studied in rat and hamster. Intestinal absorption study using bile fistula rat shows that more than 90% of SUDC administered intraduodenally was excreted in the bile within 24 hr. No change of the administered bile acid was seen during the absorption from the intestine, the passage of the liver, and the excretion into the bile. When [24-14C]SUDC and [11,12-3H2]-ursodeoxycholic acid were administered orally to a hamster, more than 95% of both the administered 14C and 3H were recovered from the feces within 6 days. Most (77%) of the fecal 14C-labeled compound was SUDC, whereas 95% of the fecal 3H-labeled compound was unconjugated lithocholic acid. These results indicate that SUDC, unlike taurine or glycine conjugated bile acid, resists bacterial deconjugation and 7-dehydroxylation.  相似文献   

8.
5alpha-[4-(14)C, 3alpha-(3)H]Cholestane-3beta,7alpha-diol was prepared from individual samples of 5alpha-[3alpha-(3)H]cholestane-3beta,7alpha-diol and 5alpha-[4-(14)C]cholestane-3beta,7alpha-diol, each derived from 3beta-acetoxycholest-5-en-7-one. Bile was collected for 11 days from adult male rats, with cannulated bile ducts, that had received intraperitoneally 0.90-0.92 mg of the doubly labeled diol. Bile from the first 10 hr, containing 63% of the administered (14)C and 6% of the (3)H, was hydrolyzed, and the bile acids were separated by acetic acid partition chromatography. Allochenodeoxycholic and allocholic acids contained at least 20.6% and 48.6%, respectively, of the (14)C retained in the biliary acids. Small amounts of (14)C (2.5% and 1.9%, respectively) were present in the 3beta isomers of these acids, but the tritium content totaled more than half of that found in the bile acid fraction. No evidence was obtained for presence of the extensive quantities of the allomuricholates.  相似文献   

9.
5beta-[G-3H]Cholestane-3alpha, 7alpha, 24xi, 25-tetrol (IV) was synthesized via dehydration and peroxidation of 5beta-[G-3H]cholestane-3alpha, 7alpha, 25-triol. Following perfusion of the labeled compound in the isolated rabbit liver, the bile alcohol and bile acid metabolites secreted into the bile were identified by a combination of thin layer chromatography, gas-liquid chromatography, and gas-liquid chromatography/mass spectrometry. The following bile alcohols were tentatively identified: 5beta-cholest-23-ene-3alpha, 7alpha, 25-triol, 5beta-cholest-25-ene-3alpha, 7alpha, 12alpha, 24xi-tetrol, and 5beta-cholestane-3alpha, 7alpha, 12alpha, 24xi, 25-pentol. The amount of administered tetrol recovered unchanged ranged from 1 to 88%. Cholic acid was the major product, but limited amounts of chemodeoxycholic acid were also formed. The 24-hydroxyl group in the steroid side chain did not prevent 12alpha-hydroxylation.  相似文献   

10.
New carbene-generating photolabile bile salt derivatives, 3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta [7 beta-3H]cholan-24-oic acid and (3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta [7 beta-3H]cholan-24-oyl)-2- aminoethanesulfonic acid were synthesized with high specific radioactivity. These 3-diazirine-derivatives could be activated to the corresponding carbenes by irradiation with ultraviolet light at 350 nm with a half-life time of 2 min. The 3-diazirine derivatives behaved in enterohepatic circulation like the natural bile salts. The uptake of [3H]taurocholate into isolated hepatocytes was competitively inhibited by (3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2- aminoethanesulfonic acid indicating that the 3,3-azo-derivative of taurocholate shares the hepatic transport systems for natural bile salts. It was demonstrated that the radioactively labeled 3-diazirine bile salt derivatives are useful probes for photoaffinity labeling of bile salt binding proteins especially in intact cells and tissues.  相似文献   

11.
The mechanism of 3-hydroxy epimerization of chenodeoxycholic acid by Clostridium perfringens was investigated in 3 alpha, 7 alpha-dihydroxy-[2,2,4,4-2H4]-, 3 alpha, 7 alpha-dihydroxy-[3 beta-2H]- and 3 beta, 7 alpha-dihydroxy-[3 alpha-2H]-5 beta-cholanoic acid transformations. Our findings rule out a dehydration-rehydration pathway and agree with a redox mechanism involving 3-oxochenodeoxycholic acid as intermediate.  相似文献   

12.
A series of 3-monohydroxylated bile acids, in unlabeled and radioactive form, of varying side chain length and configuration at C-3 has been synthesized and rigorously characterized. They include: 3 alpha- and 3 beta-hydroxy-5 beta-androstane-17 beta-carboxylic acids (C20); 3 alpha- and 3 beta-hydroxy-5 beta-pregnan-21-oic acids (C21); 3 alpha- and 3 beta-hydroxy-23,24-bisnor-5 beta-cholan-22-oic acids (C22); 3 alpha- and 3 beta-hydroxy-24-nor-5 beta-cholan-23-oic acids (C23, norlithocholic and isonorlithocholic acids); and 3 beta-hydroxy-5 beta-cholan-24-oic acid (C24, isolithocholic acid). A novel approach to the degradation of lithocholic acid acetate to 24-norlithocholic acid is described. This degradation involves the photochemical modification of a Hunsdiecker reaction and Kornblum oxidation of the intermediate 23-bromide. The availability of these compounds makes it possible to study the metabolism and biological effects of short chain bile acids.  相似文献   

13.
Free vulpecholic acid (1 alpha,3 alpha,7 alpha-trihydroxy-5 beta-cholan-24-oic) is the major biliary component of the Australian opossum (Trichosurus vulpecula), accompanied only by a few percent of its taurine conjugate. In order to exclude a microbial involvement in its formation (i.e., secondary origin) four sets of experiments were performed. It was found that a) the level of vulpecholic acid remained unchanged in the bile of opossums fed with neomycin and kanamycin for 7 days prior to bile collection; b) it also remained unchanged after long bile drainage; c) in opossums prepared with biliary cannula, intraportally injected [24-14C]chenodeoxycholic acid was transformed to [24-14C]vulpecholic acid; and d) in a similar experiment, the detectable transformation of [1 alpha,2 alpha-3H2]cholesterol to vulpecholic acid was observed. In experiment c) 28-66% of the administered radioactivity was secreted in 2 h in the form of free biliary vulpecholic and chenodeoxycholic acids. Only a trace amount of the corresponding taurine conjugates (approximately 0.4%) was formed. Moreover, rapidly declining specific radioactivity of the unconjugated chenodeoxycholic acid indicated its probable participation in the native formation of vulpecholic acid.  相似文献   

14.
In order to investigate the metabolic fate of serum esterified 7 alpha-hydroxycholesterol, [4-14C]7 alpha-hydroxycholesterol-3 beta-stearate was synthesized from labeled cholesterol and administered to bile fistula hamsters intravenously. Bile samples were collected at every 20 min for 7 h. Radioactivity was detected in bile 40 min after the beginning of the infusion of the labeled compound and 56.5 +/- 5.7% (48.7-66.0%) of the administered radioactivity was recovered in bile during 7 h. The liver contained appreciable radioactivity (19.5 +/- 7.6% of the administered dose) at the time of sacrifice. Only a trace amount of radioactivity was detected in urine and blood. Cumulative recovery of the radioactivity was 76.3 +/- 8.6% (63.3-90.4%). Major radioactive metabolites in the bile samples were identified to be taurine- and glycine-conjugated cholic acid and chenodeoxycholic acid by radioactive thin-layer chromatographic analysis of the bile samples before and after enzymatic hydrolysis and 3 alpha-hydroxysteroid dehydrogenase treatment. The conversion was nearly complete and we could not detect neutral metabolites, such as the mother compound, free 7 alpha-hydroxycholesterol and bile alcohols, as well as glucuronidated or sulfated bile acids. It is concluded that serum esterified 7 alpha-hydroxycholesterol could be effectively taken up by the liver, hydrolyzed by cholesterol esterase and metabolized via the normal biosynthetic pathway to taurine- or glycine-conjugated primary bile acids to be excreted into bile.  相似文献   

15.
The principal bile acid of Mongolian gerbil bile is cholic acid, although small amounts of chenodeoxycholic and lesser amounts of deoxycholic acids are identified. Muricholic acids were not found in gerbil bile. The ratio of trihydroxy to dihydroxy bile acids in gerbil bile is approximately 11:1. After administration of [4-(14)C]5alpha-cholestan-3beta-ol to gerbils with bile fistulas, 4-7% of the administered (14)C was recovered in bile and 16% in urine on the first 6 days. Alkaline hydrolysis of the bile afforded the biliary acids which were separated by partition chromatography. The (14)C ratio of trihydroxy to dihydroxy bile acids was 11:1. Allocholic acid was identified as the major acidic biliary metabolite. From analysis of (14)C retained in selected tissues, the adrenal gland appears to be an important site for retention of cholestanol or its metabolites.  相似文献   

16.
Bile acid structure and bile formation in the guinea pig   总被引:2,自引:0,他引:2  
The effects of intravenous infusions (1-4 mumol/min/kg) of 14 bile acids, cholic, deoxycholic, ursodeoxycholic, chenodeoxycholic, dehydrocholic, and their glycine and taurine conjugates, on bile flow and composition and on the biliary permeation of inert carbohydrates have been studied in the guinea pig bile fistula. Hydroxy bile acids were eliminated in bile without major transformation, except for conjugation (over 90%) when unconjugated bile acids were infused. During infusion of dehydrocholate and taurodehydrocholate, 77-100% of the administered dose was recovered in bile as 3-hydroxy bile acids, thus indicating that reduction of the keto group in position 3 was virtually complete. All bile acids produced choleresis at the doses employed: the strongest choleretic was deoxycholate (81.78 microliters/mumol), the weakest was taurodehydrocholate (10.2 microliters/mumol). Choleretic activity was directly and linearly related to bile acid hydrophobicity, as inferred by HPLC, both for similarly conjugated bile acids, and for bile acids having the same number, position, or configuration of the hydroxyl groups. In all instances, the rank ordering was: deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate. During choleresis produced by any of the bile acids tested, bicarbonate concentration in bile slightly declined, but the calculated concentration in bile-acid-stimulated bile (45-57 mmol/l) was always higher than that measured in plasma (23-26 mmol/l). Biliary concentrations of cholesterol (20-68 mumol/l) and phospholipid (14-63 mumol/l) were very low during spontaneous secretion, and declined even further following bile acid choleresis. None of the infused bile acids consistently modified biliary excretion of cholesterol and phospholipid. Consistent with a previous observation from this laboratory, all hydroxy bile acids reversibly diminished [14C]erythritol and [14C]mannitol biliary entry during choleresis, while they increased or failed to modify that of [3H]sucrose and [3H]inulin. The rank ordering for the inhibitory effect on [14C]erythritol and [14C]mannitol permeation was: 3 alpha,7 alpha,12 alpha-trihydroxy greater than 3 alpha,7 alpha-dihydroxy greater than 3 alpha,7 beta-dihydroxy greater than 3 alpha,12 alpha-dihydroxy bile acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Bile was collected for 18-24 days from adult male rats with cannulated bile ducts that had received intraperitoneally 0.8 mg of 5alpha-[4-(14)C, 3alpha-(3)H]cholestan-3beta-ol. Bile from the first 2 days containing 14.2% of the administered (14)C and 3.3% of the (3)H was hydrolyzed, and the bile acids were separated by acetic acid partition chromatography. The previously unidentified metabolite more polar than cholic and allocholic acids was identified by isotopic dilution as 3beta,7alpha,12alpha-trihydroxy-5alpha-cholanic acid and represented 3% of the biliary (14)C and 15% of the (3)H. Similarly, 3beta,7alpha-dihydroxy-5alpha-cholanic acid was identified in fractions more polar than allochenodeoxycholic acid and represented 0.6% of the biliary (14)C and 8% of the (3)H. More polar fractions contained 4% of the (14)C and 31% of the (3)H in unidentified metabolites.  相似文献   

18.
A new bile acid analogue, 3 alpha,7 alpha-dihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid (7-Me-norCDCA) was synthesized from the methyl ester of norursodeoxycholic acid, and its hepatic biotransformation was defined in the hamster. To synthesize 7-Me-norCDCA, the 3 alpha-hydroxyl group of methyl norursodeoxycholate was protected as the hemisuccinate, and the 7 beta-hydroxyl group was oxidized with CrO3 to form the 7-ketone. A Grigard reaction with methyl magnesium iodide followed by alkaline hydrolysis gave 7-Me-norCDCA (greater than 70% yield). The structure of the new compound was confirmed by proton magnetic resonance and mass spectrometry. After intraduodenal administration of the 14C-labeled compound into the anesthetized biliary fistula hamster, it was rapidly and efficiently secreted into the bile; 80% of radioactivity was recovered in 2 h. After intravenous infusion, the compound was efficiently extracted by the liver and secreted into the bile (greater than 75% in 3 h). Most (93%) of the biliary radioactivity was present in biotransformation products. The major biotransformation product (48.7 +/- 6.0%) was a new compound, assigned the structure of 3 alpha,5 beta,7 alpha- trihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid (5 beta-hydroxy-7- Me-norCDCA). In addition, conjugates of 7-Me-norCDCA with taurine (13.7 +/- 5.0%), sulfate (10.3 +/- 3.0%), or glucuronide (5.1 +/- 1.7%) were formed. 7-Me-norCDCA was strongly choleretic in the hamster; during its intravenous infusion, bile flow increased 2 to 3 times above the basal level, and the calculated choleretic activity of the compound (and its metabolic products) was much greater than that of many natural bile acids, indicating that the compound induced hypercholeresis. It is concluded that the biotransformation and physiological properties of 7-Me-norCDCA closely resemble those of norCDCA. Based on previous studies, the major biological effect of the 7-methyl group in 7-Me-norCDCA is to prevent its bacterial 7-dehydroxylation in the distal intestine.  相似文献   

19.
Excretion of cholate glucuronide   总被引:1,自引:0,他引:1  
[3-3H]Cholic acid glucuronide [7 alpha,12 alpha-dihydroxy-3 alpha-O-(beta-D-glucopyranosyluronate)-5 beta- cholan-24-oate] was synthesized and administered to rats prepared with either an external biliary fistula or a ligated bile duct. When bile fistula animals were given either microgram or milligram amounts of the glucuronide, biliary secretion of label was rapid and efficient: greater than 90% of the administered label was secreted within 60 min and total recovery of label in bile was 98.6 +/- 1.2%. Studies in which [14C]taurocholate was included in the dose indicated that this bile acid was secreted into bile significantly more rapidly than was the glucuronide. In animals with ligated bile ducts, urinary excretion was the major route of elimination: after 20 hr, 83.4 +/- 9.3% of the administered dose had been excreted in urine. Urinary excretion of cholate glucuronide was significantly more rapid than that of taurocholate. Gas-liquid chromatographic analysis of the methyl ester acetate derivatives of labeled compounds isolated from bile and urine by chromatography established that the bulk (greater than 70%) of the administered material was secreted in bile or excreted in urine as the intact cholate glucuronide. From these results, we conclude that the glucuronidation of cholic acid produces a derivative which is rapidly and effectively cleared from the circulation and excreted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号