首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal fast ice and underlying water of the northern Baltic Sea were sampled throughout the entire ice winter from January to late March in 2002 to study the succession of bacterial biomass, secondary production and community structure. Temperature gradient gel electrophoresis (TGGE) and sequencing of TGGE fragments were applied in the community structure analysis. Chlorophyll-a and composition of autotrophic and heterotrophic assemblages were also examined. Overall succession of ice organism assemblages consisted of a low-productive stage, the main algal bloom, and a heterotrophic post-bloom situation, as typical for the study area. The most important groups of organisms in ice in terms of biomass were dinoflagellates, plasticidic flagellates, rotifers and ciliates. Ice bacteria showed a specific succession not directly dependent on the overall succession events of ice organisms. Sequenced 16S rDNA fragments were mainly affiliated to α-, β-, and γ-proteobacterial phyla and Cytophaga–Flavobacterium–Bacteroides-group, and related to sequences from cold environments, also from the Baltic Sea. Temporal clustering of the TGGE fingerprints was stronger than spatial, although lower ice and underlying water communities always clustered together, pointing to the importance of ice maturity and ice–water interactions in shaping the bacterial communities.  相似文献   

2.
Microphytoplankton populations were studied in shallow coastal water (<60 m) near the Brazilian Antarctic Station Comandante Ferraz (EACF) and three reference areas in Admiralty Bay in early and late summer (2002–2003). Phytoplankton was diverse (113 taxa), but not abundant (103 cells l−1). The highest abundances (>104 cells l−1) were caused by pennate benthic diatoms (Fragilaria striatula Lyngbye) that occurred mainly in early summer, associated with the presence of ice. In late summer, when the water temperature (−0.4 to 1.5°C), salinity (34 to 35), and phosphate (2.6 to 4.5 μmol l−1) were highest and the dissolved oxygen was lowest (6.4 to 2.9 ml l−1), centric diatoms (Thalassiosira spp.) were more abundant, suggesting an influence of oceanic waters. Phytoplankton abundance (≤102 cells l−1) and chlorophyll a concentrations (0.22 μg l−1) were lowest close to EACF. Pennate diatoms were dominant close to shore and in surface waters elsewhere, probably because of ice melting or sediment resuspension caused by water mixing.  相似文献   

3.
The year-to-year variations of vertical distribution and biomass of anoxic phototrophic bacteria were studied during ice periods 2003–2005 and 2007–2008 in meromictic lakes Shira and Shunet (Southern Siberia, Russian Federation). The bacterial layers in chemocline of both lakes were sampled with a thin-layer hydraulic multi-syringe sampler. In winter, biomass of purple sulphur bacteria varied considerably depending on the amount of light penetrating into the chemocline through the ice and snow cover. In relatively weakly stratified, brackish Shira Lake, the depth of chemocline varied between winters, so that light intensity for purple sulphur bacteria inhabiting this zone differed. In Shira Lake, increased transparency of mixolimnion in winter, high chemocline position and absence of snow resulted in light intensity and biomass of purple sulphur bacteria exceeding the summer values in the chemocline of the lake. We could monitor snow cover at the lake surface using remote sensing and therefore estimate dynamics and amount of light under ice and its availability for phototrophic organisms. In Shunet Lake, the light intensities in the chemocline and biomasses of purple sulphur bacteria were always lower in winter than in summer, but the biomasses of green sulphur bacteria were similar.  相似文献   

4.
The efficiency of physical concentration mechanisms for enrichment of algae and bacteria in newly formed sea-ice was investigated under defined conditions in the laboratory. Sea-ice formation was simulated in a 3,000 l tank under different patterns of water movement. When ice formed in an artificially generated current pattern, algal cells were substantially enriched within the ice matrix. Enrichment factors for chlorophyll a calculated from the ratio between the concentrations in ice and underlying water reached values of up to 53. Repeated mixing of ice crystals into the water column, as well as flow of water through the new ice layer, contributed to the enrichment of algae in the ice. Wave action during ice formation revealed lower phytoplankton enrichment factors of up to 9. Mixing of floating ice crystals with underlying water and pumping of water into the ice matrix by periodical expansion and compression of the slush ice layer were responsible for the wave-induced enrichment of algal cells. Physical enrichment of bacteria within the ice was negligible. Bacterial biomass within new ice was enhanced only when the concentration of algae was high. At low algal biomass, bacteria experienced substantial losses in the ice, most likely due to brine drainage, which were not observed for the microalgae. Bacterial cells are therefore not scavenged by ice crystals and the observed enrichment and sustainment of bacterial biomass within newly formed ice depend on their attachment to cells or aggregates of algae. Division rates of bacteria changed only slightly during ice formation. Received: 21 October 1997 / Accepted: 9 April 1998  相似文献   

5.
The vertical distribution of bacterial abundance and biomass was investigated in relation to algal biomass in ice cores taken from drifting ice floes in two Arctic shelf areas: the Barents Sea and the Laptev Sea. Bacteria were not homogeneously distributed throughout the cores but occurred in dense layers. Different types of distribution patterns were found: either a single maximum occurred inside or at the bottom of the ice floe or maxima were found in different parts of the floes. Bacterial concentrations ranged from 0.4 to 36.7 · 105 cells ml−1. The size spectra of sea-ice bacteria were determined by image analysis. Cell sizes showed considerable variation between the ice floes. In multi-year sea ice, the largest bacteria were observed in the area of an internal chlorophyll a maximum. No specific vertical distribution patterns were found in first-year ice floes. Bacterial biomass for the ice cores ranged from 19.2 to 79.2 mg C m−2, and the ratio of bacterial:ice algal biomass ranged from 0.43 to 10.42. A comparison with data collected from fast ice revealed large differences in terms of cell size, abundance and biomass. Received: 7 September 1995 / Accepted: 10 September 1996  相似文献   

6.
The dynamics of protozoa were investigated during two cruises in the Indian sector of the Southern Ocean: the early spring ANTARES 3 cruise (28 September to 8 November 1995) and the late summer ANTARES 2 cruise (6 February to 8 March 1994). Biomass and feeding activity of protozoa were measured as well as the biomass of their potential prey – bacteria and phototrophic flagellates – along the 62°E meridian. The sampling grid extended from the Polar Frontal region to the Coastal and Continental Shelf Zone in late summer and to the ice edge in spring, crossing the Antarctic Divergence. Protozoan biomass, although low in absolute terms, contributed 30% and 20% to the total microbial biomass (bacteria, phytoplankton and protozoa) in early spring and late summer, respectively. Nanoprotozoa dominated the total protozoan biomass. The geographical and seasonal distribution of protozoan biomass was correlated with that of phototrophic flagellates. However, bacterial and phototrophic flagellate biomass were inversely correlated. Phototrophic flagellates dominated in the Sea Ice Zone whereas bacteria were predominant at the end of summer in the Polar Frontal region and Coastal and Continental Shelf Zone. Furthermore, bacteria were the most important component of the microbial community (57% of the total microbial biomass) in late summer. Phototrophic flagellates were ingested by both nano-and microprotozoa. In contrast, bacteria were only ingested by nanoprotozoa. Protozoa controlled up to 90% of the daily bacterial production over the period examined. The spring daily protozoan ingestion controlled more than 100% of daily phototrophic flagellate production. This control was less strong at the end of summer when protozoan grazing controlled 42% of the daily phototrophic flagellate production. Accepted: 30 October 1999  相似文献   

7.
Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [3H]leucine as substrate, was compared with incorporation rates of [3H]leucine into proteins. Relation of [3H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 105 ml–1, but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3–0.4 days–1. Total cell concentration of bacteria in 400 m depth was 6.6 × 104 ml–1. Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml–1, exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3–5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.  相似文献   

8.
Summary Sedimentation of phytoplankton provides food and energy for zoobenthic communities. In this study the rates, species composition and biomass of phytoplankton input to Frobisher Bay sediments were examined during ice (late November to July) and open water (late July to October) periods from 1982 to 1985. The rates were higher on the sea bed than at 20 m. The minimum rate (3x105 cells·m-2·day-1) of sedimentation occurred during the early part of the ice period. It increased as the ice thickened and reached a maximum of 2.8x108 cells·m-2·day-1 after the phytoplankton bloom at the beginning of the open water period in the first two weeks of August. The sedimented phytoplankton was dominated by diatoms, with a great majority of pennate species during the spring (April to June) and centric forms during the summer (July to August). Green flagellates, dinoflagellates and chrysophytes occurred as a low percentage of the total population in all seasons. Other indicators (chlorophyll a and phaeopigments) showed highest biomass levels in the deepest traps. They were consistently low during the winter (December to March) and reached their maxima during the open-water period of summer. Their abundance was correlated with the seasonal cycle of the phytoplankton in the water column.  相似文献   

9.
D. Delille 《Polar Biology》1992,12(2):205-210
Summary In the eastern Weddell Sea on several transects from ice-covered, through ice melt, to open-ocean stations, total and heterotrophic bacteria were estimated to document an enhanced bacteriological biomass expected near the ice edge. The highest numbers of bacteria were found in melted ice cores, with 4.2·103 CFUml–1 and 1.1·107 Cells ml–1. Although brine from pore water samples average more than one order of magnitude less cells per ml, the highest bacterial production, 2.2·107 cells l–1 day–1, was recorded in brine samples. All quantitatively studied bacterial parameters were lower under the ice than in the ice samples but there were no clear vertical gradients in the water column. In the studied spring situation, sea ice occurrence seems to play only a minor role in the general distribution of the seawater bacterioplankton. The bacterial community structure was investigated by carrying out 29 morphological and biochemical tests on 118 isolated strains. The bacterial communities inhabiting Antarctic pack ice differ from those found in underlying seawater. Although non fermentative Gram-negative rods were always dominant in seawater, Vibrio sp. represented more than 25% of the strains isolated from some ice samples. The results clearly indicated that a large majority of the bacteria isolated from seawater must be considered psychrotrophic but that truly psychrophilic strains occurred in melted ice and brine samples.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

10.
Samples of marine ice were collected from the Amery Ice Shelf, a large embayed ice shelf in East Antarctica, during the Austral summer of 2001–2002. The samples came from a site ∼90 km from the iceberg calving front of the shelf, where the ice is 479 m thick and the lower 203 m is composed of accreted marine ice. Protists identified within the marine ice layer of the Amery Ice Shelf include diatoms, chrysophytes, silicoflagellates and dinoflagellates. The numerical dominance of sea ice indicator diatoms such as Fragilariopsis curta, Fragilariopsis cylindrus, Fragilariopsis rhombica and Chaetoceros resting spores, and the presence of cold open water diatoms such as Fragilariopsis kerguelensis and species of Thalassiosira suggest the protist composition of the Amery marine ice is attributable to seeding from melting pack and/or fast ice protist communities in the highly productive waters of Prydz Bay to the north.  相似文献   

11.
The aim of this study was to assess the role of platelet ice microalgal communities in seeding pelagic blooms. Nutrient dynamics, microalgal biomass, photosynthetic parameters, cell densities and species succession were studied in two mesocosm experiments, designed to simulate the transition of microalgal communities from platelet ice habitat to pelagic conditions. The microalgal assemblages were dominated by diatoms, 70% of which were benthic species such as Amphiprora kufferathii, Nitzschia stellata, and Berkeleya adeliensis. Photoacclimation of benthic species was inadequate also at relatively low irradiances. Exceptional growth capacity at different light levels was observed for pelagic species such as Fragilariopsis cylindrus and Chaetoceros spp. which may be important in seeding blooms at ice breakup. Fragilariopsis cylindrus showed high growth rates both at 65 and 10% of incident light and in nutrient replete as well as in nutrient depleted conditions. Five days after inoculation, phytoplankton biomass increased and nutrient concentrations decreased in both light conditions. Nutrient uptake rates were up to 9.10 μmol L−1 d−1 of TIN in the high light tank and 6.18 μmol L−1 d−1 in the low light tank and nutrient depletion in the high light tank occurred 3 days prior to depletion in the low light tank. At nutrient depletion, biomass concentrations were similar in both tanks, 30 and 34 μg Chla L−1. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

12.
Summary Phyto- and protozooplankton were sampled in the upper 10 m of the water column in austral summer during a cruise of RV Polarstern from January 6 to February 20 1985 in the eastern Bransfield Strait vicinity and in the northern, southeastern (off Vestkapp, twice: I and II) and southern Weddell Sea (Vahsel Bay across the Filchner Depression to Gould Bay). The plankton assemblages are discussed in relation to physical, chemical and biological factors in the different geographical areas in summer. Phytoplankton biomass (Phytoplankton carbon, PPC) ranged from 4–194 g carbon/l and consisted on average of 65% diatoms and 35% autotrophic flagellates. Whereas in the northwest phytoplankton assemblages were dominated by small nanoflagellates (78% of PPC), higher biomass of diatoms (54–94% of PPC) occurred at the other sampling sites. In general autotrophic flagellates and small pennate diatoms dominated at oceanic stations; in neritic areas large centric diatoms prevailed. Chlorophyll a concentrations ranged from 0.25–3.14/g chl a/l with a mean of 1.13/gmg chlorophyll a/l and an average phytoplankton carbon/chlorophyll a ratio of 39. Protozooplankton biomass (Protozooplankton carbon, PZC) ranged from 0–67 g carbon/l and consisted of 49% ciliates, 49% heterotrophic dinoflagellates and 2% tintinnids. Heterotrophic dinoflagellates were more important in the northern investigation areas (58%–84% of PZC). Ciliates dominated the protozooplankton in the southeast and south (56%–65% of PZC); higher abundances of tintinnids were observed only in the south (11% of PZC). The most remarkable feature of the surface waters was the high protozooplankton biomass: protozooplankton amounted to 25% on an average of the combined biomass of PPC plus PZC for the entire investigation period. Protozoan biomass in the southeastern and southern Weddell Sea occasionally exceeded phytoplankton biomass. Temperature, salinity, and inorganic nutrients were generally lower in the southern regions; at most of these stations a meltwater layer occurred in the upper meters of the water column. We suggest that this physical regime allows a well developed summer system with a high proportion of heterotrophic microplankton. In the eastern Bransfield Strait, in the northern Weddell Sea and close to the coast off Vestkapp (I), however, early summer conditions occurred with less protozooplankton contribution.Contribution no. 427 from the Alfred-Wegener-Institute for Polar and Marine Research  相似文献   

13.
The surface distribution of netphytoplankton (>20 m) in the Atlantic sector of the Southern Ocean was investigated along two transects during early and late austral summer 1990/91. Sampling was under-taken at intervals of 60 of latitude between 34° and 70°S for the analysis of nutrients and for the identification and enumeration of netphytoplankton. Peaks in total diatom abundances were recorded at the Antarctic Polar Front (APF), in the vicinity of the South Sand wich Islands, in the marginal ice zone and in the neritic waters of the Atlantic sector of Antarctica. Cluster analysis indicates the existence of two major zones between Southern Africa and Antarctica. Diatom abundance increased south of the Antarctic Polar From along both transects, which can be partially explained by gradients of silicate concentration. Small chain-forming species (e.g. Fragilariopsis kerguelensis and Nitzschia lineata) dominated the diatom assemblages in early summer, while larger species, such as Rhizosolenia hebetata f. semispina and Corethron criophilum, dominated late summer diatom assemblages. The predominance of typically ice-associated forms in early summer suggests that the release of epontic cells during ice melt provides the initial inoculum for the netphytoplankton biomass. These small diatoms are subsequently replaced by larger species.  相似文献   

14.
A microphytobenthic species composition of a tidal flat in the northern Wadden Sea was analysed regarding cell numbers and biomass (in carbon units). The three sampling sites differed in tidal inundation from 15 cm to about 90 cm water depth at high tide. The sediment was sandy at all three stations. A cluster analysis revealed a separation of the benthic diatoms into three areas: aNereis-Corophium-belt, a seagrass-bed and theArenicola-flat. Small epipsammic diatoms were most abundant and dominated the microalgal biomass. A microphytobenthic “spring bloom” even started beneath the ice cover of the flat in January. Lowest values of cell numbers and biomass of benthic microalgae were found in summer. Highest values were measured in the uppermost area (Nereis-Corophium-belt), and only here was an autumnal increase of benthic microalgae found. Further cluster analysis within each of the three areas revealed seasonal differences although the majority of species were present all year round. Many species were most abundant in spring, and some showed a bimodal distribution (spring-autumn) in the year of investigation.  相似文献   

15.
This study documents, for the first time, the abundance and species composition of protist assemblages in Arctic sea ice during the dark winter period. Lack of knowledge of sea-ice assemblages during the dark period has left questions about the retention and survival of protist species that initiate the ice algal bloom. Sea-ice and surface water samples were collected between December 27, 2007 and January 31, 2008 within the Cape Bathurst flaw lead, Canadian Beaufort Sea. Samples were analyzed for protist identification and counts, chlorophyll (chl) a, and total particulate carbon and nitrogen concentrations. Sea-ice chl a concentrations (max. 0.27 μg l−1) and total protist abundances (max. 4 × 103 cells l−1) were very low, indicating minimal retention of protists in the ice during winter. The diversity of winter ice protists (134 taxa) was comparable to spring ice assemblages. Pennate diatoms dominated the winter protist assemblage numerically (averaging 77% of total protist abundances), with Nitzschia frigida being the most abundant species. Only 56 taxa were identified in surface waters, where dinoflagellates were the dominant group. Our results indicate that differences in the timing of ice formation may have a greater impact on the abundance than structure of protist assemblages present in winter sea ice and at the onset of the spring ice algal bloom.  相似文献   

16.
A short-term (3–15 days) multiple and single sediment-trap array deployed in Drescher Inlet (Eastern Weddell Sea) during austral summer 1998 showed well preserved and relatively diverse dinoflagellate assemblages comprised of 13 taxa. Consistent with other Antarctic studies, large Protoperidinium species were dominating whereas Preperidinium and Dinophysis showed minor frequencies. Athecates were not observed, possibly due to their poor preservation status. The majority of dinoflagellates were heterotrophic species, likely feeding on previously recorded abundant diatoms at the study site. Assemblage structures varied according to depth (Protoperidinium antarcticum and P. rosaceum at 10 m depth vs. P. macrapicatum and Preperidinium granulosum at 360 m depth) and collection period (first period: P. antarcticum; second period: Protoperidinium sp. C). Sediment-trap dinoflagellates were either derived from a flux out of the overlying fast ice, platelet ice, or the water column but given their high mobility, migration between these media cannot be ruled out.  相似文献   

17.
Release of an ice-active substance by Antarctic sea ice diatoms   总被引:4,自引:0,他引:4  
Interstitial water from the diatom-rich ice platelet layer in McMurdo Sound, Antarctica contains a macromolecular, ice-active substance (IAS) that, at in situ concentrations, causes dense pitting on the basal surfaces of growing ice platelets. In this respect, it resembles several fish antifreezes that also cause pitting on ice surfaces, but unlike the antifreezes, it does not lower the freezing point. The IAS appeared to be released by diatoms, as extracts from the diatoms contained IAS, while seawater from a diatom-free area did not. No evidence of IAS was found in several species of temperate water diatoms. The ice-pitting activity of the IAS was destroyed by proteases and by incubation at 40° C, but not by periodate oxidation, or by incubation with galactosidase or endonuclease. Thus, activity appears to arise from a protein or protein component, and not from carbohydrate or nucleic acids. Potential roles of the IAS in the sea ice community are discussed.  相似文献   

18.
Numbers of bacteria in annual sea ice increased directly with numbers of algae during the 1981 spring ice diatom bloom in McMurdo Sound, Antarctica. Algae and bacteria in a control site grew at rates of 0.10 and 0.05 day–1, respectively, whereas in an experimentally darkened area neither increased after six weeks. Epiphytic bacteria grew at a rate twice that of the nonattached bacteria and were significantly larger, contributing approximately 30% of the total bacterial biomass after October. The microalgal assemblage was dominated by two species of pennate diatoms, anAmphiprora sp. andNitzschia stellata. Greater than 65% of epiphytic bacteria were associated withAmphiprora sp. after October.N. stellata, however, remained largely uncolonized throughout the study. We hypothesize that microalgae stimulate bacterial growth in sea ice, possibly by providing the bacteria with organic substrates.  相似文献   

19.
 Diatom composition and biomass were investigated in the nearshore water (<30 m in depth) of Maxwell Bay, Antarctica during the 1992/1993 austral summer. Epiphytic or epilithic diatoms such as Fragilaria striatula, Achnanthes brevipes var. angustata and Licmophora spp. dominated the water column microalgal populations. Within the bay, diatom biomass in surface water was several times higher at the nearshore (2.4–14 μg C l-1) than at the offshore stations (>100 m) (1.2–3.2 μg C l-1) with a dramatic decrease towards the bay mouth. Benthic forms accounted for >90% of diatom carbon in all nearshore stations, while in the offshore stations planktonic forms such as Thalassiosira antarctica predominated (50–>90%). Microscopic examination revealed that many of these diatoms have become detached from a variety of macroalgae growing in the intertidal and shallow subtidal bottoms. Epiphytic diatoms persistently dominated during a 19-day period in the water column at a fixed nearshore station, and the biomass of these diatoms fluctuated from 0.86 to 53 μg C l-1. A positive correlation between diatom biomass and wind speed strongly suggests that wind-driven resuspension of benthic forms is the major mechanism increasing diatom biomass in the water column. Received: 28 April 1995/Accepted: 1 April 1996  相似文献   

20.
Algal communities and export of organic matter from sea ice were studied in the offshore marginal ice zone (MIZ) of the northern Barents Sea and Nansen Basin of the Arctic Ocean north of Svalbard by means of ice cores and short-term deployed sediment traps. The observations cover a total of ten stations within the drifting pack ice, visited over a period of 3 years during the period of ice melt in May and July. Maximum flux of particulate organic carbon and chlorophyll a from the ice at 1 m depth (1,537 mg C m−2 per day and 20 mg Chl a m−2 per day) exceeded the flux at 30 m by a factor of 2 during spring, a pattern that was reversed later in the season. Although diatoms dominated the ice-associated algal biomass, flagellates at times revealed similarly high biomass and typically dominated the exported algal carbon. Importance of flagellates to the vertical flux increased as melting progressed, whereas diatoms made the highest contribution during the early melting stage. High export of ice-derived organic matter and phytoplankton took place simultaneously in the offshore MIZ, likely as a consequence of ice drift dynamics and the mosaic structure of ice-covered and open water characteristic of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号