首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

1. 1. Greening barley and pea leaves treated with lincomycin have a reduced chlorophyll content. Lincomycin does not alter the proportion of chlorophyll in chlorophyll-protein complex II (CPII) but greatly reduces that in chlorophyll-protein complex I (CPI).

2. 2. Difference spectra show that chloroplasts from lincomycin-treated leaves are deficient in at least two long wavelength forms of chlorophyll a. These have maxima at 77 K of 683 and 690 nm.

3. 3. The chemically determined P-700/chlorophyll ratio of chloroplasts is unaffected by lincomycin but the photochemical P-700/chlorophyll ratio is less than half of that of the control. It is less affected than the chlorophyll-protein complex I content.

4. 4. Photosystem I activity expressed on a chlorophyll basis is unaffected by lincomycin but the light intensity for half saturation is increased 8-fold.

5. 5. Chlorophyll-protein complex I apoprotein content is reduced by lincomycin. No evidence was found for an accumulation of its precursor(s). The relative abundance of major peptides of 18 000, 15 000 and 12 000 daltons in lincomycin-treated chloroplasts is attributed to a general inhibition of greening and associated membrane formation.

Abbreviations: DCIP, 2,6-dichlorophenolindophenol; CPI, chlorophyll-protein complex I; CPII, chlorophyll-protein complex II; SDS, sodium dodecyl sulphate  相似文献   


2.
An improved procedure for the electrophoretic fractionation of higher plant chlorophyllprotein complexes is described. Compared with currently used systems, it greatly reduces the amount of chlorophyll that is found unassociated with protein after electrophoresis and resolves four chlorophyll-protein complexes. The slowest migrating band has a red adsorption maximum at 674 nm or greater, contains chlorophyll a but not chlorophyll b, and has a molecular weight equivalency of 110,000. These properties are similar to the previously described CPI or P700-chlorophyll a-protein complex. The amount of the total chlorophyll in this material is increased by two to three fold over that present in the equivalent complex fractionated by previous procedures. The other three chlorophyll-protein complexes contain both chlorophylls a and b, and have molecular weight equivalencies of 80,000, 60,000, and 46,000. None of these complexes seems to correspond directly to the previously characterized light-harvesting chlorophyll ab-protein complex.  相似文献   

3.
Howard Thomas 《Planta》1982,154(3):212-218
Soluble and thylakoid membrane polypeptides from senescing leaf tissue of Rossa, a normal yellowing Festuca pratensis genotype, were fractionated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and compared with those of the non-yellowing mutant Bf 993. Subunits of ribulose-1,5-bisphosphate carboxylase were the major soluble polypeptides and declined to low levels in senescing leaves of both genotypes. The major thylakoid polypeptides were those associated with the chlorophyllprotein complexes CPI and CPII. The levels of all thylakoid polypeptide species fell during senescence of Rossa leaf tissue but Bf993 lamellae retained CPI, CPII and a number of other hydrophobic low molecular weight polypeptides. The increasing hydrophobicity and decreasing protein complement of Bf 993 thylakoids were reflected in a fall in membrane density from 1.16 to 1.13 g cm-3 over 8 d of senescence and a decline in the extractability of chlorophyll-containing membranes in the same period. In Bf993 the molar ratio of chlorophyll to hydrophobic membrane protein increased from 92 at day 0 to 296 at day 8. In the same time the ratio for Rossa increased from 88 to 722 and 8 d-senesced Rossa tissue yielded less than 2% of the solvent-soluble protein it contained at day 0 as compared with 24% for the protein of Bf993. These results are discussed in relation to the nature of the non-yellowing lesion.Abbreviations RuBPC ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - EDTA ethylenediaminetetraacetate - SDS sodium dodecyl sulphate - CP chlorophyll-protein complex  相似文献   

4.
Circular dichroism (c.d.) was measured for four chlorophyll-protein complexes, resolved from sodium dodecyl sulphate extracts of chloroplasts by electrophoresis in polyacrylamide gel containing Deriphat 160 (disodium N-dodecyl beta-imidopropionate), a zwitterionic detergent. The slowest-band (1) complex was found to be identical with the complex CP1 as found on electrophoresis in the presence of anion detergent, but it was in a much higher yield (30% of the chlorophyll a). In band-2 and -3 protein complexes a c.d. pattern described for the complex CP2 could be recognized. Another c.d. component of a split-exciton type with extrema at 680 (-) and 669 (+)nm, together with evidence of disorganized chlorophyll, was found in band-2, -3 and -4 complexes. When a barley (Hordeum vulgare) mutant lacking chlorophyll b was examined, only bands 1 and 4 were obtained, and the c.d. of the band-4 complex was much less affected by disorganized chlorophyll. C.D. spectra resembling that of this band-4 complex could be generated by subtracting the c.d. of complex CP1 from the c.d. of photochemically active mutant chloroplast fragments, or by subtracting the c.d. of complexes CP1 and CP2 from pea (Pisum sativum) chloroplast fragments. The Deriphat appears to have preserved at least to some extent a new type of chlorophyll a-protein complex.  相似文献   

5.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

6.
Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 +/- 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 +/- 8000, and resembles the previously described P-700-chlorophyll a-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 +/- 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II.  相似文献   

7.
properties, pigment compositions, Chl a/b ratios and apparent molecular weights of chlorophyll-protein complexes were compared between spinach and a marine green alga, Bryopsis corticulans. The results are as follows: 1. Ten chlorophyll-protein complexes were resolved from spinach thylakoid membranes solubilized by SDS in a final SDS/Chl weight ratio of 10:1, and subjected to SDS-PAGE with 11% resolution gel. CPIa 1–3 and CPI belonged to photosystem Ⅰ, and the rest to phorosystem Ⅱ. The maximum absorption of CPIa2, CPIas and CPI were all at 674nm, but that of CPIa1 at 670nm, and those of LHCII and D2 at 670 and 673nm, respectively. Chlorophyll ia PSⅡ was 63% of the total. In PSⅡ, most of chlorophyll was in LHCII which contained 86% of the chlorophyll in PSⅡ. In PSⅠ, chlorophyll in CPla was 72% of the total. Chlorophyll a was the main pigment in PSⅠ components which have Chl a/b ratio over 15. 2. Eight chlorophyll-protein complexes were isolated from B. corticulans with a SDS/Chi weight ratio of 8:1 and 8% resolution gel. The maximum absorption of CPIa, CPI, LHCII and D2 were respectively at 671nm, 673nm, 669nm and 664nm. PSⅡ contained 77% of the total chlorophyll. LHCII chlorophyll was 95% of the PSⅡ chlorophyll. CPI held 77% of PSⅠ chloro~ phyll. There was more chlorophyll b in Bryopsis complexes, especially in LHCI1 (Chl a/b< 0.8). The molecular weights of Bryopsis complexes were higher than those of the spinach complexes. Bryopsis LHCII contained siphoxanthin and siphothin, the marked pigments of Siphohales, as functional pigments. The above results revealed three points of difference between these two plants. Firstly, Chl a is the main pigment in spinach, whereas in Bryopsis the main pigments are Chl b and siphoxanthin. This is in accordance with the suggestion that plants may change their pigment composition to adapt light regime in the environment during evolution. Secondly, in Bryopsis, chlorophyll is concentrated in photosystem Ⅱ, but in spinach chlorophyll is shared evenly by two photosystems. Finally, CPI in Bryopsis contained the major part of chlorophyll in PSⅠ, yet in spinach CPIa is the superior.  相似文献   

8.
Jeanette S. Brown 《BBA》1980,591(1):9-21
A spectroscopic study of chlorophyll-protein complexes isolated from Euglena gracilis membranes was carried out to gain information about the state of chlorophyll in vivo and energy transfer in photosynthesis. The membranes were dissociated by Triton X-100 and separated into fractions by sucrose gradient centrifugation and hydroxyapatite chromatography. Four different types of chlorophyll-protein complexes were distinguished from each other and from detergent-solubilized chlorophyll in these fractions by examination of their absorption, fluorescence excitation (400–500 nm) and emission spectra at low temperature. These types were: (1). A mixture of antenna chlorophyll a- and chlorophyll ab-proteins with an absorption maximum at 669 and emission at 682 nm; (2) a P-700-chlorophyll a-protein (chlorophyll: P-700 = 30 : 1), termed CPI with an absorption maximum at 676 nm and emission maxima at 698 and 718 nm; (3) a second chlorophyll a-protein (CPI-2) less enriched in P-700, with an absorption maximum at 676 nm and emission maxima at 680, 722 and 731 nm; (4) a third chlorophyll a-protein (CPa1) with no P-700, absorption maxima at 670 and 683 nm, and an unusually sharp emission maximum at 687 nm. Treatment of CPa1 with sodium dodecyl sulfate drastically altered its spectroscopic properties indicating that at least some chlorophyll-proteins isolated with this detergent are partially denatured. The results suggest that the complex absorption spectra of chlorophyll in vivo are caused by varying proportions of different chlorophyll-protein complexes, each with different groups of chlorophyll molecules bound to it and making up a unique entity in terms of electronic transitions.  相似文献   

9.
G. Laskay  E. Lehoczki  A. L. Dobi  L. Szalay 《Planta》1986,169(1):123-129
The effects of the pyridazinone compound SAN 9785 on the photosynthetic competence of leaves, on the photochemical activity of isolated thylakoids and on the formation and spectral properties of chlorophyll-protein complexes were studied during a 72-h greening period of detached etiolated leaves of barley (Hordeum vulgare L. cv. Horpácsi kétsoros). It was established that i) the photosynthetic capacity of the leaves decreased considerably (by 80 and 90%, as determined by14CO2 fixation and fast fluorescence induction measurements, respectively); ii) the photochemical activity of isolated thylakoids from water to potassium ferricyanide and from dichlorophenol indophenol/ascorbate to methylviologen exhibited only slight reductions when expressed on a chlorophyll basis compared with the control; iii) the slow fluorescence induction curves of the treated leaves demonstrated the presence of a peculiar fluorescence component interrupting the quenching of fluorescence at around 1 min illumination; iv) a shortage of the chlorophyll-protein complex of photosystem I (CPI) occurred with a higher content of the monomer of the light harvesting complex in the thylakoids of treated leaves; and v) the fluorescence spectrum of the CPI band present in treated leaves indicates the destruction of the structural integrity of this complex during isolation from the membrane.Abbreviations Chl chlorophyll - CPI, CPII chlorophyll-protein complexes of the reaction centres of PSI and PSII - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPIP 2,6-dichlorophenol indophenol - DPIPH2 chemically reduced form of DPIP - F o fluorescence of constant yield - F v fluorescence of variable yield - F i ,F m mitial and maximum yield of fluorescence - LHCP3 monomer of the light-harvesting complex - LHCP2 and LHCP1 oligomers of the light-harvesting complex LHCP3 - PSI, PSII photosystems I, II - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone, also known as BASF 13-338 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

10.
Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b[ill]/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.  相似文献   

11.
The light-harvesting complex (LHC) of higher plants isolated using Triton X-100 has been studied during its transformation into a monomeric form known as CPII. The change was accomplished by gradually increasing the concentration of the detergent, sodium dodecyl sulfate (SDS). Changes in the red spectral region of the absorption, circular dichroism (CD), and linear dichroism spectra occurring during this treatment have been observed at room temperature. According to a current hypothesis the main features of the visible region absorption and CD spectra of CPII can be explained reasonably successfully in terms of an exciton coupling among its chlorophyll (Chl) b molecules. We suggest that the spectral differences between the isolated LHC and the CPII may be understood basically in terms of an exciton coupling between the Chl b core of a given CPII unit and at least one of the Chla's of either the same or the adjacent CPII. We propose that this Chl a-Chl b coupling existing in LHC disappears upon segregation into CPII, probably as a result of a detergent-related overall rotation of the strongly coupled Chl b core which changes the relative orientations of the two types of pigments and thus the nature of their coupling.Abbreviations Chl Chlorophyll - CD Circular dichroism - LD Linear dichroism - LHC Light-harvesting complex - SDS Sodium dodecyl sulfate - CPII A solubilized form of LHC obtained with SDS polyacrylamide gel electrophoresis Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

12.
Sally Reinman  J.Philip Thornber 《BBA》1979,547(2):188-197
Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 ± 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 ± 8000, and resembles the previously described P-700-chlorophylla-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 ± 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II.  相似文献   

13.
E.A. Johnson 《FEBS letters》1984,166(1):209-210
Using a phosphoroscopic attachment to the dichrograph, light-induced circular dichroism spectra have been measured for chlorophyll-protein complexes of Photosystem I. Minor components at 672, 678 and 685 nm are observed in these spectra in addition to the components of dimer splitting of the P700 Qy transition at 691 and 698 nm. The minor components are due to the Chl672, Chl678 and Chl685 forms of antenna chlorophylls, the optical activity of which is changed 2–4% as a result of P700 oxidation. It is suggested that P700 is not an isolated dimer but that it is included in a local complex comprising 8–10 chlorophyll molecules with an exciton level splitting value of 120–140 cm?1.  相似文献   

14.
Tsang ML 《Plant physiology》1981,68(5):1098-1104
Using the thioredoxin/glutaredoxin-dependent adenosine 3'-phosphate 5'-phosphosulfate reductase coupled assay system, the Chlorella thioredoxin/glutaredoxin system has been partially purified and characterized. A NADPH-thioredoxin reductase and two thioredoxin/glutaredoxin activities, designated as Chlorella thioredoxin/glutaredoxin protein I and II (CPI and CPII), were found in crude extracts of Chlorella. Similar to their counterparts from Escherichia coli, both CPI and CPII are heat-stable low molecular proteins of approximately 14,000. While CPI (but not CPII) is a substrate for its homologous NADPH-thioredoxin reductase as well as for E. coli NADPH-thioredoxin reductase, CPII is better than CPI as a substrate for reduction by the glutathione system. Based on these properties, CPI and CPII may be classified as Chlorella thioredoxin and Chlorella glutaredoxin, respectively. The Chlorella NADPH-thioredoxin reductase (M(r) = 72,000, with two 36,000-dalton subunits) resembles E. coli-thioredoxin reductase in size. Besides Chlorella thioredoxin, the Chlorella thioredoxin reductase will also use E. coli thioredoxin, but not glutaredoxin, as a substrate. Although a thioredoxin-like protein has been implicated in higher plant light-dependent sulfate reaction, neither Chlorella thioredoxin nor glutaredoxin can stimulate the thiol-dependent adenosine 5'-phosphosulfate-sulfotransferase reaction. Furthermore, Chlorella thioredoxin and glutaredoxin, in conjunction with an appropriate reductase system, cannot replace the thiol requirement of Chlorella adenosine 5'-phosphosulfate-sulfotransferase. The exact physiological roles and subcellular localization of the Chlorella thioredoxin and glutaredoxin systems remain to be determined.  相似文献   

15.
Abstract Comparative studies on the low temperature fluorescence emission of whole cells, purified chlorophyll-protein (CP) complexes and on patterns noted in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) for chlorophyll-protein complexes and chloroplast membrane polypeptides of Scenedesmus obliquus with several distinct mutant classes has allowed further correlation between the fluorescence emission bands seen at 77K and the known chlorophyll-protein complexes. In mutants deficient in photosystem II (PS-II; total loss of the reducing side) the fluorescence emission spectra showed only two peaks, i.e., 686 and 718 nm, but in the wild type, in mutants lacking the oxidizing side of PS-II and in phenotypes missing the CP-a1 complex (and P-700 activity) all three emission bands at 686, 696 and 718 nm were present. In a mutant lacking the light-harvesting CP-a/b complex the emission peak at 686 nm was strongly reduced and the longer wavelength emissions predominated. Gel electrophoresis studies showed that the PS-II (reducing side) mutants lacked the polypeptides of apparent molecular weight 54 and 51 kilodaltons and the chlorophyll-protein complex, CP-aII, of apparent molecular weight 32 kilodaltons. Contrarily, the loss of the oxidizing side of PS-II did not result in any alteration of these components. Genetic deletion of CP-a1 did not alter significantly the long wavelength emission even though the isolated CP-a1 shows the low temperature-dependent long wavelength emission comparable to that seen in the whole cell. It was deduced that remaining PS-I antennae chlorophylls must account for the emission seen at 718 nm. The absence of the CP-a/b complex and the strong simultaneous decrease of the 686 nm emission strengthens the concept that this complex is the primary emitter of fluorescence at room temperature. Its absence facilitated the detection of the CP-aII complex in SDS-PAGE and enhanced the in vivo fluorescence by the two photosystems. Parallel experiments with two mutants which green and develop, one to the wild-type and the other to the CP-a/b deficient phenotype, provided additional evidence for the source of the low temperature emission bands.  相似文献   

16.
The mechanism by which sub-cortical actin bundles and membranous organelles are immobilised in the cortical cytoplasm of the alga Chara was studied by perfusing cells with a solution containing 1% Triton X-100. Light and scanning electron microscopy and the release of starch grains and chlorophyll-protein complexes indicated that the detergent extensively solubilised the chloroplasts. However, the sub-cortical actin bundles remained in situ even though they were originally separated from the plasma membrane by the chloroplasts. A fibrous layer between chloroplasts and plasma membrane became readily visible after detergent extraction of the cells and could be released by low-ionic-strength ethylenediaminetetraacetic acid, thioglycollate and trypsin. The same treatments applied to cells not subject to detergent extraction released the membrane-bound organelles and actin bundles and no fibrous meshwork was visible on subsequent extraction with Triton. It is, therefore, concluded that a detergent-insoluble cortical cytoskeleton exists and contributes to the immobility of the actin and cortical organelles in the cells.Abbreviation EDTA ethylenediaminetetraacetic acid  相似文献   

17.
Development of chlorophyll-proteins in photosystem II was studied with Euglena gracilis Z. during dark-light transition. Upon illumination of the dark-grown cells, protochlorophyllide was photoconverted to chlorophyll(ide) a with a low efficiency (14%). After a lag time of 1-2 h, chlorophylls, apoproteins of antenna chlorophyll-protein complex CP 43/47 and of light-harvesting chlorophyll-protein complex (LHCII) accumulated in the thylakoid membrane in a coordinated fashion. There was, however, a significant difference in the stability between the newly formed LHCII and CP 43/47 judging from non-denaturing lithium dodecyl sulfate-polyacrylamide gel electrophoresis. The possibility that efficiencies of incorporation and stabilization of chlorophylls in the apoproteins differ among the chlorophyll-proteins in the early stage of greening of Euglena is discussed.  相似文献   

18.
Leaves and chloroplast suspensions of severely and slightly iron deficient cucumber ( Cucumis sativus L.) plants were characterized by low-temperature fluorescence emission spectroscopy and Deriphat polyacrylamide gel electrophoresis. The emission spectra of the chloroplast suspensions were resolved into Gaussian components and those changes induced by iron deficiency were related to the variations in the chlorophyll-protein pattern. The symptoms described with these methods were also correlated with the iron content of the leaves. It was concluded that the lack of physiologically active iron caused a relative decrease of photosystem I (PSI) and light harvesting complex I (LHCI), together with the long wavelength fluorescence, especially the 740 nm Gaussian component, and. to a much lesser extent, of the photosystem II (PSII) core complexes (relative increase of 685, 695 nm components). However, the relative decrease in the amount of light harvesting complex II (LHCII) was followed by a relative increase in its fluorescence band at 680 nm, showing that energy transfer from LHCII to core complex II (CCII) was partly disturbed. Thus iron deficiency affected the photosynthetic apparatus in a complex way: it decreased the synthesis of chlorophylls (Chls) and influenced the expression and assembly of Chl-binding proteins.  相似文献   

19.
Barley, maize, pea, soybean, and wheat exhibited differences in chlorophyll a/b ratio and chlorophyll-protein (CP) complex composition during the initial stages of chloroplast development. During the first hours of greening, the chlorophyll a/b ratios of barley, pea, and wheat were high (a/b8) and these species contained only the CP complex of photosystem I as measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. A decrease in chlorophyll a/b ratio and the observation of the CP complexes associated with photosystem II and the light-harvesting apparatus occurred at later times in barley, pea, and wheat. In contrast, maize and soybean exhibited low chlorophyll a/b ratios (a/b<8) and contained the CP complexes of both photosytem I and the light-harvesting apparatus at early times during chloroplast development. The species differences were not apparent after 8 h of greening. In all species, the CP complexes were stabilized during the later stages of chloroplast development as indicated by a decrease in the percentage of chlorophyll released from the CP complexes during detergent extraction. The results demonstrate that CP complex synthesis and accumulation during chloroplast development may not be regulated in the same way in all higher plant species.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - LHC the major light-harvesting complex associated with photosystem II - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 10335 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.  相似文献   

20.
The three major chlorophyll-proteins of spinach chloroplasts were solubilized with digitonin and isolated by electrophoresis with deoxycholate. The gel bands were identified from their absorption and fluorescence spectra measured at 77 K. The slowest moving band was a Photosystem I complex (CPI); the second, a Photosystem II complex (Cpa); and the third, a chlorophyll a-b, antenna complex (LHCP). When absorption spectra (630–730 nm) of the bands were added in the proportions found in the gel, the sum closely matched the absorption of the chloroplasts both before and after solubilization. Thus these spectra represent the native absorption of the major antenna chlorophyll-proteins of green plants. Each of these spectra was resolved with a computer assisted, curve-fitting program into 8 mixed Gaussian-Lorentzian shaped components. The major, Chl a components in the 3 fractions were different both in peak positions and bandwidths. This result suggests that each chlorophyll-protein has its own unique set of chlorophyll a spectral forms or components.Abbreviations Chl chlorophyll - CPI Photosystem I Chl-protein - CPa Photosystem II Chl-protein - LHCP light-harvesting Chl a-b protein - DOC sodium deoxycholate - SDS sodium dodecylsulfate CIW-DPB No. 819  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号