首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 4-amino,3,5,6-trichloropicolinic acid (picloram) on transport from leaves to the roots was studied using young bean (Phaseolus vulgaris L.), mesquite (Prosopis juliflora var. velutina (Woot.) Sarg.), and huisache (Acacia farnesiana (L) Willd.) plants. The only picloram treatments which were effective in enhancing transport of 14C-assimilate or 14C-picloram to the roots were those made to the shoots or roots one day or more before application of the label to the shoots. The enhancement of transport was not evident when un-labeled picloram or 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), or both, were applied at the same time as the 14C-label. Enhancement of transport was to the more mature stem or root tissues. Inorganic nitrogen applied to nitrogen-deficient bean plants also increased transport of 14C-assimilate to the roots, especially the rate.  相似文献   

2.
Horton RF  Fletcher RA 《Plant physiology》1968,43(12):2045-2048
The transport of the synthetic auxin, picloram (4-amino-3,5,6-trichloropicolinic acid) was investigated in sections of petioles of Phaseolus vulgaris L. and Coleus blumei Benth. and stems of Pisum sativum L. Transport of 14C-picloram was basipolar in all tissues, although the degree of polarity was dependant on age. The velocity of picloram movement was calculated at between 0.75 and 1.11 mm/hr. The amount moved in a given time, the flux, was dependant on the concentration applied and the length of the sections used. Picloram did not appear to be metabolized by the tissues during the transport experiments. When compared to the movement of other growth regulators, picloram transport bears marked similarities to that of 2,4-dichlorophenoxyacetic acid.  相似文献   

3.
In nutrient agar comparative concentrations (10?3 to 10?5M) of (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T) were generally more inhibitory to the growth of tissue cultures of soybean (Glycine max (L.) Merrill cv. Acme) and cottonwood (Populus deltoides Marsh.) than were either 4-amino-3,5,6-trichloropicolinic acid (picloram) or 3,6-dichloro-o-anisic acid (dicamba). Compared to untreated tissue dicamba or picloram at 10?6M in the nutrient agar resulted in a 200 % increase in the growth of soybean tissue. At 10?5 and 10?6M dicamba also produced an increase in the growth of cottonwood tissue. Greatest absorption of picloram and dicamba by tissue cultures from agar occurred during the first 24 h after treatment. However, absorption remained nearly static thereafter for 14 days. More dicamba was absorbed by soybean and cottonwood tissue cultures than either picloram or 2,4,5-T.  相似文献   

4.
A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles.  相似文献   

5.
The effects of 4-amino-3,5,6-trichloropicolinic acid (picloram) on protein synthesis in bean (Phaseolus vulgaris L. cv. ‘Astro’) hypocotyl and hook tissues were studied. Picloram (10-4M) was shown to have a stimulatory effect on 14C-1-DL-leucine uptake in hook but not hypocotyl tissues. Maximum leucine incorporation and maximum total protein concentration occurred in hook tissues treated with 10-4M picloram. Inhibition of protein synthesis with cycloheximide (CH) and erythromycin (ERY) indicates that endogenous and picloram-stimulated protein synthesis is a function of the 80S cytoplasmic ribosomes rather than 70S chloroplast or mitochondria ribosomes.  相似文献   

6.
Uptake, translocation and metabolism of 14C-labelled 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) in seedlings of wheat (Triticum aestivum L.) were studied. The uptake of the herbicides through the upper surface of the first leaf was slow but was almost complete after nine days. Picloram was absorbed faster than 2,4-D. Picloram was also translocated into the stem and the untreated leaves to a greater extent than 2,4-D. Only small fractions of the activity were recovered from the roots and from the nutrient solution. Picloram and 2,4-D formed water-soluble conjugates in the tissues. These conjugates were very labile and hydrolyzed under release of the unchanged herbicides. The isotope from 2,4-D was also incorporated in an insoluble fraction, containing cell walls and proteins. Also from this fraction biologically active 2,4-D could be released by hydrolysis. The formation of the complexes was partly prevented by cycloheximide. It is suggested that herbicide detoxification through complex formation is of importance for the relatively low sensitivity of wheat to auxin herbicides.  相似文献   

7.
The absorption, translocation, and metabolism of thifensulfuron-methyl {methyl 3-[[[[(4-methoxy)-6-methyl-1,3,5-triazin-2-yl]-amino]-carbonyl] amino]sulfonyl]-2-thiophenecarboxylate} were investigated in tolerant Essex soybean [Glycine max (L.) Merr.], moderately tolerant Vance soybean, and spurred anoda [Anoda cristata (L.) Schlecht.], and susceptible velvetleaf (Abutilon theophrasti Medic.). Radiolabeled (thiophene-2-14C) thifensulfuron-methyl was absorbed readily by young seedlings of all species following a foliar spray with the herbicide. Spot-applied 14C-thifensulfuron-methyl was absorbed by the treated leaf of all species. Absorption of thifensulfuron-methyl was limited when excised stems of all species were dipped into the herbicide solution for 2 h. Translocation of absorbed thifensulfuron-methyl to other plant parts was limited in all species, regardless of the method of its application. Root exudation of leaf-applied thifensulfuron-methyl was observed in all species and it was higher in seedlings of spurred anoda and velvetleaf. The two soybean cultivars metabolized 62–70% of absorbed thifensulfuron-methyl at 3 days after treatment with spot-applied 14C-thifensulfuron. Velvetleaf and tolerant spurred anoda metabolized about 50% of the absorbed herbicide. The major metabolite formed in all species appeared to be deesterified thifensulfuron acid. Differential metabolism seems to be a contributing factor in the selectivity of thifensulfuron-methyl between the two soybean cultivars and velvetleaf. The metabolic basis for the moderate tolerance of spurred anoda to thifensulfuron-methyl is not understood at the present time.Plant Pathology, Physiology, and Weed Science Department, Contribution no. 628.  相似文献   

8.
Bolton  P.  Harwood  J. L. 《Planta》1978,138(3):223-228
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass.  相似文献   

9.
Paul Bolton  John L. Harwood 《Planta》1978,139(3):267-272
Lipid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivum L.) leaves. The endogenous levels of acyl lipids and their constituent fatty acids from the same leaf sections were also analysed. The principle chloroplast acyl lipids showed a relative increase in amount with the age of the leaf section. Their content of -linolenic acid also increased whereas there was little change in the amount of this acid in phosphatidylcholine and phosphatidylethanolamine, which are primarily non-chloroplastic. The content of trans-3-hexadecenoic acid in phosphatidylglycerol increased approximately 20-fold between the youngest (basal) and oldest (distal) leaf sections.The incorporation of [14C]acetate was always high into monogalactosyldiacylglycerol, phosphatidylcholine and the neutral lipid (mainly pigments) fractions. With increasing age, the neutral lipids were less well labelled. In three of the plant species but not in barley, phosphatidylglycerol was heavily labelled. Monogalactosyldiacylglycerol usually contained the highest amount of radioactivity in the middle leaf sections. Apart from these generalisations, each plant type had its own specific pattern of radiolabelling.  相似文献   

10.
Translocation and complex formation of 14C-labelled 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram) in seedlings of sunflower (Helianthus annuus L. var. uniflorus), rape (Brassica napus L. cv. Nilla), wheat (Triticum aestivum L. cv. Starke), and Norway spruce (Picea abies (L.) H. Karst.) were studied. The herbicides were absorbed through the roots from the nutrient solution, Picloram was well translocated to the shoots of the four species; while the acropetal translocation of 2,4-D was small except in rape. In 2,4-D-susceptible sunflower and rape and in picloramsusceptible sunflower and spruce the herbicides were recovered mainly in the uncomplexed form. In 2,4-D tolerant wheat and spruce most of the absorbed 2,4-D was converted into water-soluble or TCA-insoluble complexes. In picloram-tolerant wheat and in relatively picloram-tolerant rape, the absorbed picloram was also converted into complexes recovered predominantly in the water-soluble fraction. Most of the complexes released free herbicides by hydrolyzing in NaOH or HCI. The results further support the hypothesis that complex formation counteracts herbicide toxicity.  相似文献   

11.
Summary Plant regeneration in Kentucky bluegrass (Poa pratensis L. cv. Touchdown) via culture of seedling tissues was investigated. When coleoptile, leaf, and stem sections of dark-germinated seedlings were cultured on Murashige and Skoog (MS) medium, different types of callus were produced, depending on the expiant source and growth regulator combinations. Only compact-friable callus (type 3) and moderately compact, friable callus (type 2) produced shoots upon subculture. The nonstructured watery callus (type 4) produced roots without shoots. Shoot differentiation from callus tissues was highest when the culture medium contained 0.2 mgL–1 picloram + 0.01 mgL–1 -naphthaleneacetic acid (NAA). Calli grown from coleoptiles had higher shoot regeneration frequency (32%) than that obtained from either stem sections (12%) or young leaf tissues (2%) of the same seedlings. Some organogenic callus lines produced exclusively green plants, while others produced albino shoots or a mixture of green and albino shoots. The green plants were multiplied in a medium containing 0.1 mgL–1 BAP plus either 0.2 mgL–1 picloram or 0.1 mgL–1 indole-3-acetic acid (IAA). Over 90% of the cultures in the shoot proliferation medium produced roots in 4 weeks. The rooted plants were successfully established in soil medium and grown in the greenhouse.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog (1962) medium - NAA -naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid - TDZ thidiazuron  相似文献   

12.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

13.
The effect of chlorflurenol (methyl 2-chloro-9-hydroxyfluorene-9-carboxylate) (CF) on chlorophyll (chl) content was studied in intact plants and floating leaf disks. For intact soybean (Glycine max (L.) Merrill) plants grown in the growth chamber, 2.5 μg/ml CF applied 10 to 20 d after planting retarded chl decline in senescing tissues such as cotyledons and unifoliate leaves and increased chl content in recently expanded tissues such as trifoliate leaves. CF did not retard chl decline in the dark unless regulator application was followed by a period of 24 h in the light prior to darkness. In floating leaf disk tests, CF retarded chl decline in dock (Rumex obtusifolius L.) and radish (Raphanus sativus L.) at concentrations of 10?4 M, but was ineffective at lower concentrations. Chl decline was significantly hastened by CF in tobacco (Nicotiana tabacum L.) and soybean, but was unchanged in barley (Hordeum vulgare L.). CF treatment increased tissue weight (g fresh wt/cotyledon; g dry wt/ cm2 for unifoliate and trifoliate leaves), decreased moisture content, and increased leaf thickness, palisade layer thickness, and palisade and spongy mesophyll cell counts. We conclude that plants treated with morphactins show greater green coloration predominantly because of growth effects, and only in small part because of prevention of chl decline in senescing tissues.  相似文献   

14.
Uptake, translocation and complex formation of 14C-labelled 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) in seedlings of rape (Brassica napus L. cv. Nilla) and sunflower (Helianthus annuus L. var. uniflorus) were studied. Sunflower is susceptible both to 2,4-D and picloram, while rape is susceptible to 2,4-D but more tolerant to picloram. The uptake of the herbicides through the leaves was almost complete in both species. Translocation of 2,4-D into the roots took place more readily than that of picloram. In sunflower about 50 per cent of the applied 2,4-D was extruded through the roots into the nutrient solution after 9 days. In the picloram-treated sunflower most of the activity was found in the aerial parts, while in picloram-treated rape most of the activity still occurred in the treated leaf after 9 days. No activity at all was found in the roots or in the nutrient solution of the picloram-treated rape seedlings. While the major part of 2,4-D always was found in the state of free herbicide, a large fraction of picloram was rapidly bound into water-soluble complexes. This binding was especially pronounced in rape. Separation by paper chromatography showed that different radioactive compounds were formed. Most of these could be hydrolyzed, thereby releasing free herbicide. The results support the hypotheses that complex formation could counteract herbicide translocation and toxicity of auxin herbicides.  相似文献   

15.
Summary The effects of fusaric acid (5-n-butylpicolinic acid), picolinic acid (2-pyridine carboxylic acid), and picloram (4-amino-3, 5, 6-trichloropicolinic acid) on endogenous ethylene production by tomato cuttings and elongation growth of oat coleoptile sections were measured. Ethylene production by tomato cuttings was substantially stimulated by treatment with 1×10−3 and 1×10−5 M picoloram and to a lesser extent by 1×10−3 M fusaric acid; picolinic acid had little effect. The ethylene levels produced in response to fusaric acid are not high enough to account for the ethylene injury observed in Fusarium wilt. Fusaric acid inhibited oat coleoptile extension, picolinic acid had little effect, and picloram promoted growth.  相似文献   

16.
The effect of chlorflurenol (methyl 2-chloro-9-hydroxyfluorene-9-carboxylate) (CF) on chlorophyll (chl) content was studied in intact plants and floating leaf disks. For intact soybean (Glycine max (L.) Merrill) plants grown in the growth chamber, 2.5 g/ml CF applied 10 to 20 d after planting retarded chl decline in senescing tissues such as cotyledons and unifoliate leaves and increased chl content in recently expanded tissues such as trifoliate leaves. CF did not retard chl decline in the dark unless regulator application was followed by a period of 24 h in the light prior to darkness. In floating leaf disk tests, CF retarded chl decline in dock (Rumex obtusifolius L.) and radish (Raphanus sativus L.) at concentrations of 10–4 M, but was ineffective at lower concentrations. Chl decline was significantly hastened by CF in tobacco (Nicotiana tabacum L.) and soybean, but was unchanged in barley (Hordeum vulgare L.).CF treatment increased tissue weight (g fresh wt/cotyledon; g dry wt/ cm2 for unifoliate and trifoliate leaves), decreased moisture content, and increased leaf thickness, palisade layer thickness, and palisade and spongy mesophyll cell counts. We conclude that plants treated with morphactins show greater green coloration predominantly because of growth effects, and only in small part because of prevention of chl decline in senescing tissues.This paper reports results of research only. Mention of a pesticide in this paper does not constitute a recommendation by USDA nor does it imply registration under FIFRA. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

17.
Mechanism of paraquat tolerance in perennial ryegrass   总被引:6,自引:3,他引:3  
Abstract The mechanism of paraquat tolerance was investigated in lines of perennial ryegrass (Lolium perenne L.) which had been selected for resistance to the herbicide. Uptake, metabolism and translocation of paraquat were studied. Susceptible cultivars and a tolerant line were not found to differ in uptake of radioactive paraquat applied to the leaf surface or supplied to the cut ends of excised leaves. Distribution of herbicide within leaf tissue was similar in tolerant and susceptible plants and no metabolites of 14C-paraquat were detected in tolerant or susceptible plants treated with sub-lethal concentrations of the herbicide. Autoradiography and quantitative determinations showed much variation in translocation of 14C-paraquat out of treated leaves of intact plants, but the variation was not related to the degree of susceptibility to the herbicide. It is concluded that paraquat tolerance in perennial ryegrass is unlikely to depend upon reduced uptake, enhanced metabolism or altered translocation of the herbicide.  相似文献   

18.
Kang BG 《Plant physiology》1971,47(3):352-356
In the primary leaf sections of etiolated wheat (Triticum aestivum L.) seedlings, red light-induced unrolling is accompanied by an increase in incorporation of 14C-leucine into protein. By differential centrifugation, the unrolling response was found to be closely related to incorporation of the amino acid into the supernatant fraction (105,000g). Cycloheximide and chloramphenicol inhibit both leaf unrolling and synthesis of the supernatant protein, although chloramphenicol exerts its effect more strongly on the fraction which presumably contains the plastids. In a barley (Hordeum vulgare L.) albino mutant completely devoid of ribulose diphosphate carboxylase activity, only incorporation of 14C-leucine into the supernatant fraction is substantially promoted by red light. This mutant exhibits the photoresponse of leaf unrolling.  相似文献   

19.
Summary An immunocytochemical technique was used to localize the red-absorbing form of phytochrome at the light- or electron-microscope level in etiolated barley (Hordeum vulgare L.) coleoptile tip, rice (Oryza sativa L.) coleoptilar node, maize (Zea mays L.) coleoptile tip, rye (Secale cereale L.) coleoptile tip and coleoptilar node, and oat (Avena sativa L.) root cap. Staining for phytochrome in the cells was found to be generally distributed throughout the cytoplasm. In addition, barley also showed staining around the periphery of vesicles, and rice showed staining in numerous discrete regions in the cytoplasm. Electron-microscopic localization studies of the nodal region of rye and the root cap of oat indicate staining associated with the nuclear membrane and with the interior of mitochondria and amyloplasts as well as general staining like that observed with the light microscope. Cells of the coleoptile tip of maize were unusual in having heavy staining associated with amyloplasts only.Abbreviations DAB 3,3-diaminobenzidine - PAP peroxidase-antiperoxidase complex - Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome  相似文献   

20.
The effect of dimethyl sulfoxide (DMSO) on zinc65 uptake, respiration, RNA, and protein metabolism in various tissues of two bean (Phaseolus vulgaris L.) cultivars showing differential growth responses to zinc has been studied. At a concentration of 1%, DMSO stimulated zinc uptake in excised roots, stem-callus tissue, leaf disks, and enzymically isolated leaf cells, but did not significantly alter the uptake and incorporation of C14-uracil into RNA and C14-methionine into protein, although a slight inhibition was discernible in some tissues. At a higher concentration (10%) DMSO increased Zn65 uptake in excise roots incubated for 2 hr; however, at the same concentration, C14-uracil and C14-methionine uptake and incorporation were considerably inhibited in all the tissues. Oxygen uptake as measured with Warburg manometers was impaired, and the inhibition showed a time and concentration dependency. The fact that DMSO inhibited respiration and RNA and protein metabolism, while at the same concentration zinc uptake was increased, suggests that zinc uptake in beans is primarily a non-metabolic process. The possible mechanisms of DMSO action are discussed in the light of its reported effects on membrane permeability and cell metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号