首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.  相似文献   

2.
Recent studies have advocated a role for mitochondrial DNA (mtDNA) in sperm competition. This is controversial because earlier theory and empirical work suggested that mitochondrial genetic variation for fitness is low. Yet, such studies dealt only with females and did not consider that variation that is neutral when expressed in females, might be non-neutral in males as, in most species, mtDNA is never selected in males. We measured male ability to compete for fertilizations, at young and late ages, across 25 cytoplasms expressed in three different nuclear genetic backgrounds, within a population of Drosophila melanogaster. We found no cytoplasmic (thus no mtDNA) genetic variation for either male offence or offensive sperm competitiveness. This contrasts with previous findings demonstrating cytoplasmic genetic variation for female fitness and female ageing across these same lines. Taken together, this suggests that mitochondrial genes do not contribute to variation in sperm competition at the within-population level.  相似文献   

3.
In Drosophila melanogaster, biological rhythms, aggression and mating are modulated by group size and composition. However, the fitness significance of this group effect is unknown. By varying the composition of groups of males and females, we show that social context affects reproductive behaviour and offspring genetic diversity. Firstly, females mating with males from the same strain in the presence of males from a different strain are infecund, analogous to the Bruce effect in rodents, suggesting a social context-dependent inbreeding avoidance mechanism. Secondly, females mate more frequently in groups composed of males from more than one strain; this mitigates last male sperm precedence and increases offspring genetic diversity. However, smell-impaired Orco mutant females do not increase mating frequency according to group composition; this indicates that social context-dependent changes in reproductive behaviour depend on female olfaction, rather than direct male-male interactions. Further, variation in mating frequency in wild-type strains depends on females and not males. The data show that group composition can affect variance in the reproductive success of its members, and that females play a central role in this process. Social environment can thus influence the evolutionary process.  相似文献   

4.
In promiscuously mating species, there is strong selection on males to maximize their share of paternity through both defensive and offensive means. This has been most extensively examined using the Drosophila melanogaster model system. In these studies, sperm competition has been examined by mating a virgin female to two consecutive males and then determining the fertilization success of both the first male (defending, P1) and the second male (offending, P2). Recent evidence suggests that male defense may be influenced by female mating history (i.e., virgin versus nonvirgin). Here, by mating females to males with three different genotypes, we show that female mating history does not affect male defensive or offensive abilities in sperm competition. We also show that, although female lifetime fecundity was not correlated with the number of times that she mated, it was reduced by increased exposure to males. These data indicate that measures of P1 and P2 previously reported in D. melanogaster may be robust to the specific mating history of the females used in these studies.  相似文献   

5.
Under sperm competition, paternity is apportioned by polyandrous females according to the order of matings and the genetic quality of the inseminating males. In order to distinguish between these two effects, we sequentially paired 12 female smooth newts (Lissotriton vulgaris) with each of two males and, where possible, repeated the same procedure in reverse order of the identical males after assumed sperm depletion. For a total of 578 offspring, amplified fragment length polymorphisms genetic markers revealed multiple paternities in all matings, without significant first- or second-male sperm precedence. The paternity share of individual males was transitive across the two trials with male order switch, and successful males had a significantly higher genetic dissimilarity to the female than expected by chance. We argue that patterns of paternity in natural newt populations are determined through a combination of good genes and relatedness.  相似文献   

6.
Darwin first identified female choice and male—male competitionas forms of sexual selection resulting in the evolution of conspicuoussexual dimorphism, but it has proven challenging to separatetheir effects. Their effects on sexual selection become evenmore complicated when sperm competition occurs because spermprecedence may be either a form of cryptic female choice ora form of male—male competition. We examined the effectsof tail height on male—male competition and female choiceusing the sexually dimorphic red-spotted newt (Notophthalmusviridescens viridescens). Experiment 1 examined whether maletail height influenced male mating success. Males with deeptails were more successful at mating with females than thosewith shallow tails. Successful, deep-tailed males also were bigger(snout-vent length; SVL) than unsuccessful, shallow-tailed males,but they did not vary in tail length or body condition. Of these,only tail height and tail length are sexually dimorphic traits.Experiment 2 tested the hypothesis that the differential successof males with deeper tails was due to female choice by examiningboth simultaneous female preference for association and sequentialfemale choice. We found no evidence of female choice. When maleswere not competing to mate with females, tail height did notinfluence male mating success. Successful males did not havedifferent SVL and tail lengths than unsuccessful males. Thus,tail height in male red-spotted newts appears to be an intrasexuallyselected secondary sexual characteristic. Experiment 3 usedpaternity exclusion analyses based on molecular genetic markersto examine the effect of sperm precedence on sperm competitionin doubly-mated females. Sperm precedence likely does not havea pervasive and consistent effect on fertilization success becausewe found evidence of first, last, and mixed sperm usage.  相似文献   

7.
Sperm size and number variation in the red flour beetle   总被引:5,自引:0,他引:5  
Disruptive selection between large, nutritive gametes and numerous, competing gametes may have driven the evolution and maintenance of anisogamy. Sperm competition can explain why there are so many tiny sperm because numerical competition between rival gametes drives males to maximize sperm number and this may be achieved by minimizing sperm size. Since males operate within a finite reproductive budget and ejaculate production is limited, we might predict that, when variation in sperm size exists, males must trade increases in sperm size against a decrease in sperm number. We use Tribolium castaneum as our model to investigate the existence of a sperm size-number trade-off. We sampled 14 different populations that have been isolated for different periods (up to 39 years) and find across this sample of 70 males that there is significant variation in both sperm length and ejaculate sperm number between males. Despite this significant variance, we find no evidence for any relationship between sperm size and number across males. There is some evidence for a trade-off when we analyse across 14 population means, but this relationship is not robust and disappears when a single outlier is omitted. We conclude that sperm size and ejaculate sperm number vary independently, but that differential allocation to gonadal tissue and/or ejaculation frequency would permit this independent variation.  相似文献   

8.

Background  

When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of Drosophila failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence.  相似文献   

9.
We consider mathematical models describing the evolutionary consequences of antagonistic interactions between male offence, male defence and female reproductive tract and physiology in controlling female mating rate. Overall, the models support previous verbal arguments about the possibility of continuous coevolutionary chase between the sexes driven by two-way (e.g. between male offence and female traits) and three-way (e.g. between male offence, male defence and female traits) inter-sexual antagonistic interactions. At the same time, the models clarify these arguments by identifying various additional potential evolutionary dynamics and important parameters (e.g. genetic variances, female optimum mating rates, strength of selection in females and the relative contributions of first and second males into offspring) and emphasizing the importance of initial conditions. Models also show that sexual conflict can result in the evolution of monandry in an initially polyandrous species and in the evolution of random mating in a population initially exhibiting non-random mating.  相似文献   

10.
Variation in female choice for mates has implications for the maintenance of genetic variation and the evolution of male traits. Yet, estimates of population-level variation in male mating success owing to female genotype are rare. Here, we used a panel of recombinant inbred lines to estimate the strength of selection at many genetic loci in a single generation and attempt to assess differences between females with respect to the males they mated with. We performed selection assays in a complex environment to allow differences in habitat or social group preference to be expressed. We detected directional selection at loci across the genome, but are unable to provide support for differential male success because of variation in female genotype.  相似文献   

11.
Luck N  Dejonghe B  Fruchard S  Huguenin S  Joly D 《Genetica》2007,130(3):257-265
Sperm competition is expected to be a driving force in sexual selection. In internally fertilized organisms, it occurs when ejaculates from more than one male are present simultaneously within the female’s reproductive tract. It has been suggested that greater sperm size may improve the competitive ability of sperm, but studies provide contradictory results depending on the species. More recently, the role of females in the evolution of sperm morphology has been pointed out. We investigate here the male and female effects that influence sperm precedence in the giant sperm species, Drosophila bifurca Patterson & Wheeler. Females were mated with two successive males, and the paternity outcomes for both males were analyzed after determining sperm transfer and storage. We found very high values of last male sperm precedence, suggesting a strong interaction between rival sperm. However, the data also indicate high frequencies of removal of the sperm of the first male from the female reproductive tract prior to any interaction with the second male. This implies that successful paternity depends mainly on successful sperm storage. Knowing what happens to the sperm within females appears to be a prerequisite for disentangling post-copulatory sexual interactions between males and females.  相似文献   

12.
A key question in sexual selection is whether the ability of males to fertilize eggs under sperm competition exhibits heritable genetic variation. Addressing this question poses a significant problem, however, because a male's ability to win fertilizations ultimately depends on the competitive ability of rival males. Attempts to partition genetic variance in sperm competitiveness, as estimated from measures of fertilization success, must therefore account for stochastic effects due to the random sampling of rival sperm competitors. In this contribution, we suggest a practical solution to this problem. We advocate the use of simple cross-classified breeding designs for partitioning sources of genetic variance in sperm competitiveness and fertilization success and show how these designs can be used to avoid stochastic effects due to the random sampling of rival sperm competitors. We illustrate the utility of these approaches by simulating various scenarios for estimating genetic parameters in sperm competitiveness, and show that the probability of detecting additive genetic variance in this trait is restored when stochastic effects due to the random sampling of rival sperm competitors are controlled. Our findings have important implications for the study of the evolutionary maintenance of polyandry.  相似文献   

13.
Length of the sperm flagellum and of the female's primary sperm-storage organ, the seminal receptacle (SR), exhibit a pattern of rapid correlated evolution in Drosophila and other lineages. Experimental evolution studies with Drosophila melanogaster indicate that these traits have coevolved through sexual selection, with length of the SR representing the proximal basis of female sire discrimination, biasing paternity according to sperm length. Here, we examine the impact of experimentally varying the developmental environment, including larval density and larval and adult nutrition, on sperm length, SR length and on the pattern of sperm precedence. Expression of SR length was far more sensitive to variation among developmental environments than was sperm length. Nevertheless, there was striking co-variation in sperm and SR length. The developmental environment of both females and second males, but not first males, significantly contributed to variation in male competitive fertilization success.  相似文献   

14.
K. A. Hughes 《Genetics》1997,145(1):139-151
To assess the genetic basis of sperm competition under conditions in which it occurs, I estimated additive, dominance, homozygous and environmental variance components, the effects of inbreeding, and the weighted average dominance of segregating alleles for two measures of sperm precedence in a large, outbred laboratory population. Both first and second male precedence show significant decline on inbreeding. Second male precedence demonstrates significant dominance variance and homozygous genetic variance, but the additive variance is low and not significantly different from zero. For first male precedence, the variance among homozygous lines is again significant, and dominance variance is larger than the additive variance, but is not statistically significant. In contrast, male mating success and other fitness components in Drosophila generally exhibit significant additive variance and little or no dominance variance. Other recent experiments have shown significant genotypic variation for sperm precedence and have associated it with allelic variants of accessory-gland proteins. The contrast between sperm precedence and other male fitness traits in the structure of quantitative genetic variation suggests that different mechanisms may be responsible for the maintenance of variation in these traits. The pattern of genetic variation and inbreeding decline shown in this experiment suggests that one or a few genes with major effects on sperm precedence may be segregating in this population.  相似文献   

15.
Manipulation of ejaculates is believed to be an important avenue of female choice throughout the animal kingdom, but evidence of its importance to sexual selection remains scarce. In crickets, such manipulation is manifest in the premature removal of the externally attached spermatophore, which may afford females an important means of postcopulatory mate choice. We tested the hypothesis that premature spermatophore removal contributes significantly to intraspecific variation in sperm precedence by (1) experimentally manipulating spermatophore attachment durations of competing male Gryllodes sigillatus and (2) employing protein electrophoresis to determine the paternity of doubly mated females. The relative spermatophore attachment durations of competing males had a significant influence on male paternity, but the pattern of sperm precedence deviated significantly from the predictions of an ideal lottery. Instead, paternity data and morphological evidence accorded best with a model of partial sperm displacement derived here. Our model is similar to a displacement model of Parker et al. in that sperm of the second male mixes instantaneously with that of the first throughout the displacement process, but the novel feature of our model is that the number of sperm displaced is only a fraction of the number of sperm transferred by the second male. Regardless of the underlying mechanism, female G. sigillatus can clearly alter the paternity of their offspring through their spermatophore-removal behavior, and employ such cryptic choice in favoring larger males and those providing larger courtship food gifts. We discuss how female control of sperm transfer and intraspecific variation in sperm precedence may be important precursors to the evolution of gift giving in insects.  相似文献   

16.
Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha, a species in which ovarian fluid (OF) has been implicated as a potential arbiter of cryptic female choice for genetically compatible mates. We evaluated this predicted sexually selected function of OF using a series of factorial competitive fertilization trials. Our design involved a series of 10 factorial crosses, each involving two ‘focal’ rival males whose sperm competed against those from a single ‘standardized’ (non-focal) rival for a genetically uniform set of eggs in the presence of OF from two focal females. This design enabled us to attribute variation in competitive fertilization success among focal males, females (OF) and their interacting effects, while controlling for variation attributable to differences in the sperm competitive ability of rival males, and male-by-female genotypic interactions. Using this experimental framework, we found that variation in sperm competitiveness could be attributed exclusively to differences in the sperm competitive ability of focal males, a conclusion supported by subsequent analyses revealing that variation in sperm swimming velocity predicts paternity success. Together, these findings provide evidence that variation in paternity success can be attributed to intrinsic differences in the sperm competitive ability of rival males, and reveal that sperm swimming velocity is a key target of sexual selection.  相似文献   

17.
In many species, males can influence the amount of resources their mates invest in reproduction. Two favoured hypotheses for this observation are that females assess male quality during courtship or copulation and alter their investment in offspring accordingly, or that males manipulate females to invest heavily in offspring produced soon after mating. Here, we examined whether there is genetic variation for males to influence female short-term reproductive investment in Drosophila melanogaster, a species with strong sexual selection and substantial sexual conflict. We measured the fecundity and egg size of females mated to males from multiple isofemale lines collected from populations around the globe. Although these traits were not strongly influenced by the male's population of origin, we found that 22 per cent of the variation in female short-term reproductive investment was attributable to the genotype of her mate. This is the first direct evidence that male D. melanogaster vary genetically in their proximate influence on female fecundity, egg size and overall reproductive investment.  相似文献   

18.
In Tribolium flour beetles and other organisms, individuals migrate between heterogeneous environments where they often encounter markedly different nutritional conditions. Under these circumstances, theory suggests that genotype-by-environment interactions (GEI) may be important in facilitating adaptation to new environments and maintaining genetic variation for male traits subject to directional selection. Here, we used a nested half-sib breeding design with Tribolium castaneum to partition the separate and joint effects of male genotype and nutritional environment on phenotypic variation in a comprehensive suite of life-history traits, reproductive performance measures across three sequential sexual selection episodes, and fitness. When male genotypes were tested across three nutritional environments, considerable phenotypic plasticity was found for male mating and insemination success, longevity and traits related to larval development. Our results also revealed significant additive genetic variation for male mating rate, sperm offence ability (P(2)), longevity and total fitness and for several traits reflecting both larval and adult resource use. In addition, we found evidence supporting GEI for sperm defence ability (P(1)), adult longevity and larval development; thus, no single male genotype outperforms others in every nutritional environment. These results provide insight into the potential roles of phenotypic plasticity and GEI in facilitating Tribolium adaptation to new environments in ecological and evolutionary time.  相似文献   

19.
The sexual conflict hypothesis predicts that males evolve traits that exploit the higher parental investment of females, which generates selection for females to counter-evolve resistance. In Drosophila melanogaster it is now established that males harm females and that there is genetic variation among males for the degree of this harm. Genetic variation among females for resistance to harm from males, and the corresponding strength of selection on this variation, however, have not been quantified previously. Here we carryout a genome-wide screen for female resistance to harm from males. We estimate that the cost of interactions with males depresses lifetime fecundity of females by 15% (95% CI: 8.2-22.0), that genetic variation for female resistance constitutes 17% of total genetic variation for female adult fitness, and that propensity to remate in response to persistent male courtship is a major factor contributing to genetic variation for female resistance.  相似文献   

20.
The copulatory behaviour of male mammals is characterized by striking diversity in patterns of copulatory stimulation and ejaculation frequency. We conducted comparative analyses of rodents to investigate the potential influence of sperm competition in the evolution of copulatory behaviour. We found that increasing sperm competition is associated with faster rates of stimulation and earlier ejaculation among species in which males perform multiple intromissions prior to ejaculation, but with no overall change in the number of intromissions per ejaculation. Increasing sperm competition is also associated with a higher frequency of repeated ejaculations with the same female, and with shorter refractory periods between repeated copulations. Increasing sperm competition level thus appears to select for male ability to ejaculate more rapidly and more frequently with each female mated. As prolonged copulations are known to reduce female remating rates, these findings indicate that males may experience opposing selection pressures on copulatory behaviour with respect to offensive and defensive aspects of sperm competition. We conclude that sperm competition is likely to be an important selection pressure explaining diversity in mammalian copulatory behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号