共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions of palmitoylsphingomyelin with cholesterol in multilamellar vesicles have been studied over a wide range of compositions and temperatures in excess water by using electron spin resonance (ESR) spectroscopy. Spin labels bearing the nitroxide free radical group on the 5 or 14 C-atom in either the sn-2 stearoyl chain of phosphatidylcholine (predominantly 1-palmitoyl) or the N-stearoyl chain of sphingomyelin were used to determine the mobility and ordering of the lipids in the different phases. Two-component ESR spectra of the 14-position spin labels demonstrate the coexistence first of gel (L(beta)) and liquid-ordered (L(o)) phases and then of liquid-ordered and liquid-disordered (L(alpha)) phases, with progressively increasing temperature. These phase coexistences are detected over a limited range of cholesterol contents. ESR spectra of the 5-position spin labels register an abrupt increase in ordering at the L(alpha)-L(o) transition and a biphasic response at the L(beta)-L(o) transition. Differences in outer splitting between the C14-labeled sphingomyelin and phosphatidylcholine probes are attributed to partial interdigitation of the sphingomyelin N-acyl chains across the bilayer plane in the L(o) state. In the region where the two fluid phases, L(alpha) and L(o), coexist, the rate at which lipids exchange between phases (<7 x 10(7) s(-)(1)) is much slower than translational rates in the L(alpha) phase, which facilitates resolution of two-component spectra. 相似文献
2.
Massey JB 《Biochimica et biophysica acta》2001,1510(1-2):167-184
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature. 相似文献
3.
Alpha-synuclein is a presynaptic protein, the A53T and A30P mutants of which are linked independently to early-onset familial Parkinson's disease. The association of wild-type alpha-synuclein with lipid membranes was characterized previously by electron spin resonance (ESR) spectroscopy with spin-labeled lipids [Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919-12926]. Here, we study the interaction of the A53T and A30P alpha-synuclein mutants and a truncated form that lacks the acidic C-terminal domain with phosphatidylglycerol bilayer membranes, using anionic phospholipid spin labels. The strength of the interaction with phosphatidylglycerol membranes lies in the order: wild type approximately truncated > A53T > A30P > fibrils approximately 0, and only the truncated form interacts with phosphatidylcholine membranes. The selectivity of the interaction of the mutant alpha-synucleins with different spin-labeled lipid species is reduced considerably, relative to the wild-type protein, whereas that of the truncated protein is increased. Polarized infrared (IR) spectroscopy is used to study the interactions of the wild-type and truncated proteins with aligned lipid membranes and additionally to characterize the fibrillar form. Wild-type alpha-synuclein is natively unfolded in solution and acquires secondary structure upon binding to membranes containing phosphatidylglycerol. Up to 30-40% of the amide I band intensity of the membrane-bound wild-type and truncated proteins is attributable to beta-sheet structure, at the surface densities used for IR spectroscopy. The remainder is alpha-helix and residual unordered structure. Fibrillar alpha-synuclein contains 62% antiparallel beta-sheet and is oriented on the substrate surface but does not interact with deposited lipid membranes. The beta-sheet secondary-structural elements of the wild-type and truncated proteins are partially oriented on the surface of membranes with which they interact. 相似文献
4.
Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers 总被引:5,自引:0,他引:5
To study the structural requirements of the molecular interactions between cholesterol and sphingomyelins in model membranes, sphingomyelin derivatives were synthesized in which (a) the 3-hydroxy group was replaced with a hydrogen atom or with a methoxy, ethoxy, or tetrahydropyranyloxy group, (b) the N-acyl chain length was varied, and (c) the N-acyl chain length contained an alpha-hydroxy group. The chemical syntheses of these derivatives from DL-erythro-sphingosine are reported. The properties of these sphingomyelin derivatives were examined in monolayer membranes at the air/water interface. The mean molecular area of the pure N-stearoylsphingomyelin derivatives was determined, and the effects of cholesterol on the condensation of sphingomyelin packing in the monolayer were recorded. It was observed that replacement of the 3-hydroxy group of sphingomyelin with a hydrogen atom or its substitution with a methoxy or ethoxy group did not affect the ability of cholesterol to condense the molecular packing in monolayers. Even when a bulky tetrahydropyranyloxy group was introduced at the 3-hydroxy position of egg sphingomyelin, cholesterol was still able to condense the molecular packing of this derivative. The condensing effect of cholesterol on derivatives of N-stearoyl-SPMs was significantly larger than the comparable effect observed with 1,2-distearoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. Our results with 3-hydroxysphingomyelins having differing N-acyl chain lengths (i.e., N-stearoyl, N-myristoyl, and N-lauroyl), and with 3-hydroxy-N-(alpha-hydroxypalmitoyl)sphingomyelin also indicated that cholesterol was able to induce condensation of the molecular packing.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
The temperature dependences of the ESR spectra from different positional isomers of sphingomyelin and of phosphatidylcholine spin-labeled in their acyl chain have been compared in mixed membranes composed of sphingolipids and glycerolipids. The purpose of the study was to identify the possible formation of sphingolipid-rich in-plane membrane domains. The principal mixtures that were studied contained sphingomyelin and the corresponding glycerolipid phosphatidylcholine, both from egg yolk. Other sphingolipids that were investigated were brain cerebrosides and brain gangliosides, in addition to sphingomyelins from brain and milk. The outer hyperfine splittings in the ESR spectra of sphingomyelin and of phosphatidylcholine spin-labeled on C-5 of the acyl chain were consistent with mixing of the sphingolipid and glycerolipid components, in fluid-phase membranes. In the gel phase of egg sphingomyelin and its mixtures with phosphatidylcholine, the outer hyperfine splittings of sphingomyelin spin-labeled at C-14 of the acyl chain of sphingomyelin are smaller than those of the corresponding sn-2 chain spin-labeled phosphatidylcholine. This is in contrast to the situation with sphingomyelin and phosphatidylcholine spin-labeled at C-5, for which the outer hyperfine splitting is always greater for the spin-labeled sphingomyelin. The behavior of the C-14 spin-labels is attributed to a different geometry of the acyl chain attachments of the sphingolipids and glycerolipids that is consistent with their respective crystal structures. The two-component ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled at C-14 of the acyl chain directly demonstrate a broad two-phase region with coexisting gel and fluid domains in sphingolipid mixtures with phosphatidylcholine. Domain formation in membranes composed of sphingolipids and glycerolipids alone is related primarily to the higher chain-melting transition temperature of the sphingolipid component. 相似文献
6.
Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy 下载免费PDF全文
Swamy MJ Ciani L Ge M Smith AK Holowka D Baird B Freed JH 《Biophysical journal》2006,90(12):4452-4465
The importance of membrane-based compartmentalization in eukaryotic cell function has become broadly appreciated, and a number of studies indicate that these eukaryotic cell membranes contain coexisting liquid-ordered (L(o)) and liquid-disordered (L(d)) lipid domains. However, the current evidence for such phase separation is indirect, and so far there has been no direct demonstration of differences in the ordering and dynamics for the lipids in these two types of regions or their relative amounts in the plasma membranes of live cells. In this study, we provide direct evidence for the presence of two different types of lipid populations in the plasma membranes of live cells from four different cell lines by electron spin resonance. Analysis of the electron spin resonance spectra recorded over a range of temperatures, from 5 to 37 degrees C, shows that the spin-labeled phospholipids incorporated experience two types of environments, L(o) and L(d), with distinct order parameters and rotational diffusion coefficients but with some differences among the four cell lines. These results suggest that coexistence of lipid domains that differ significantly in their dynamic order in the plasma membrane is a general phenomenon. The L(o) region is found to be a major component in contrast to a model in which small liquid-ordered lipid rafts exist in a 'sea' of disordered lipids. The results on ordering and dynamics for the live cells are also compared with those from model membranes exhibiting coexisting L(o) and L(d) phases. 相似文献
7.
The dynamics and environment of sphingomyelin spin-labelled at different positions in the N-acyl chain have been studied in dimyristoyl phosphatidylcholine bilayer membranes by using electron spin resonance spectroscopy. Comparison was made with phosphatidylcholine spin-labelled on the sn-2 acyl chain in the same host membrane. Spin-labelled sphingomyelin was found to mix well with the host phosphatidylcholine lipids in both gel and fluid phase membranes. At 1 mol%, mutual spin-spin interactions are no greater than for spin-labelled phosphatidylcholine. In the fluid membrane phase, the effective chain order parameters and polarity-sensitive isotropic hyperfine coupling constants of spin-labelled sphingomyelin display a similar dependence on the position of labelling to those of spin-labelled phosphatidylcholine. The values of both parameters are, however, generally larger for sphingomyelin than for phosphatidylcholine at equivalent positions of acyl chain labelling. This difference is attributed to the different chain linkage of sphingo- and glycero-lipids, combined with an offset of approximately one C-atom in transbilayer register between the respective N-acyl and O-acyl chains. In the gel phase, differences in chain configuration between sphingomyelin and phosphatidylcholine are indicated by differences in spin label spectral anisotropy between the two lipids, which appears to reverse towards the terminal methyl chain end. 相似文献
8.
Kobayashi A Takanezawa Y Hirata T Shimizu Y Misasa K Kioka N Arai H Ueda K Matsuo M 《Journal of lipid research》2006,47(8):1791-1802
Cholesterol and phospholipids are essential to the body, but an excess of cholesterol or lipids is toxic and a risk factor for arteriosclerosis. ABCG1, one of the half-type ABC proteins, is thought to be involved in cholesterol homeostasis. To explore the role of ABCG1 in cholesterol homeostasis, we examined its subcellular localization and function. ABCG1 and ABCG1-K120M, a WalkerA lysine mutant, were localized to the plasma membrane in HEK293 cells stably expressing ABCG1 and formed a homodimer. A stable transformant expressing ABCG1 exhibited efflux of cholesterol and choline phospholipids in the presence of BSA, and the cholesterol efflux was enhanced by the presence of HDL, whereas cells expressing ABCG1-K120M did not, suggesting that ATP binding and/or hydrolysis is required for the efflux. Mass and TLC analyses revealed that ABCG1 and ABCA1 secrete several species of sphingomyelin (SM) and phosphatidylcholine (PC), and SMs were preferentially secreted by ABCG1, whereas PCs were preferentially secreted by ABCA1. These results suggest that ABCA1 and ABCG1 mediate the lipid efflux in different mechanisms, in which different species of phospholipids are secreted, and function coordinately in the removal of cholesterol and phospholipids from peripheral cells. 相似文献
9.
The adsorption of human serum albumin (HSA) to dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was studied as a function of content and headgroup size of the polymer lipid. In the absence of protein, conversion from the low-density mushroom regime to the high-density brush regime of polymer-lipid content is detected by the change in ESR outer hyperfine splitting, 2A(max), of chain spin-labelled phosphatidylcholine in gel-phase membranes. The values of 2A(max) remain constant in the mushroom regime, but decrease on entering the brush regime. Conversion between the two regimes occurs at mole fractions X(PEG)(m-->b) approximately 0.04, 0.01-0.02 and 0.005-0.01 for PEG-DPPE with mean PEG molecular masses of 350, 2000 and 5000 Da, respectively, as expected theoretically. Adsorption of HSA to DPPC membranes is detected as a decrease of the spin label 2A(max) hyperfine splitting in the gel phase. Saturation is obtained at a protein/lipid ratio of ca. 1:1 w/w. In the presence of polymer-grafted lipids, HSA adsorbs to DPPC membranes only in the mushroom regime, irrespective of polymer length. In the brush regime, the spin-label values of 2A(max) are unchanged in the presence of protein. Even in the mushroom regime, protein adsorption progressively becomes strongly attenuated as a result of the steric stabilization exerted by the polymer lipid. These results are in agreement with theoretical estimates of the lateral pressure exerted by the grafted polymer in the brush and mushroom regimes, respectively. 相似文献
10.
Rotational diffusion of cholestane spin-label (CSL), a sterol analogue, in various phosphatidylcholine (PC)-cholesterol membranes was systematically studied by computer simulation of steady-state ESR spectra as a function of chain length and unsaturation of alkyl chains, cholesterol mole fraction, and temperature for better understanding of phospholipid-cholesterol and cholesterol-cholesterol interactions. CSL motion in the membrane was treated as Brownian rotational diffusion of a rigid rod within the confines of a cone imposed by the membrane environment. The wobbling rotational diffusion constant of the long axis, its activation energy, and the cone angle of the confines are obtained for various membranes in the liquid-crystalline phase. The wobbling diffusion constant decreases in the order dilauroyl-PC greater than dimyristoyl-PC greater than dioleoyl-PC approximately dipalmitoyl-PC greater than distearoyl-PC greater than dioleoyl-PC/cholesterol = 3/1 greater than dioleoyl-PC/cholesterol = 1/1 membranes. Activation energy for the wobbling diffusion of the long axis of CSL is strongly dependent on alkyl chain length, unsaturation, and cholesterol mole fraction. It decreases with decrease in alkyl chain length and by introduction of unsaturation in the alkyl chains. In dioleoylphosphatidylcholine membranes, activation energy decreases by a factor of approximately 3 in the presence of 50 mol % cholesterol. Activation energy for wobbling diffusion of CSL in phosphatidylcholine membranes is smaller than the activation energy for translational diffusion of a phospholipid. The former is more dependent on alkyl chain length and unsaturation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
The adsorption of human serum albumin (HSA) to dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was studied as a function of content and headgroup size of the polymer lipid. In the absence of protein, conversion from the low-density mushroom regime to the high-density brush regime of polymer-lipid content is detected by the change in ESR outer hyperfine splitting, 2Amax, of chain spin-labelled phosphatidylcholine in gel-phase membranes. The values of 2Amax remain constant in the mushroom regime, but decrease on entering the brush regime. Conversion between the two regimes occurs at mole fractions XPEG(m→b)≈0.04, 0.01-0.02 and 0.005-0.01 for PEG-DPPE with mean PEG molecular masses of 350, 2000 and 5000 Da, respectively, as expected theoretically. Adsorption of HSA to DPPC membranes is detected as a decrease of the spin label 2Amax hyperfine splitting in the gel phase. Saturation is obtained at a protein/lipid ratio of ca. 1:1 w/w. In the presence of polymer-grafted lipids, HSA adsorbs to DPPC membranes only in the mushroom regime, irrespective of polymer length. In the brush regime, the spin-label values of 2Amax are unchanged in the presence of protein. Even in the mushroom regime, protein adsorption progressively becomes strongly attenuated as a result of the steric stabilization exerted by the polymer lipid. These results are in agreement with theoretical estimates of the lateral pressure exerted by the grafted polymer in the brush and mushroom regimes, respectively. 相似文献
12.
The interaction of N-alkyl-N,N,N-trimethylammonium (CnTMA, n = 6-18) salts (iodides and/or bromides) with model membranes prepared by hydration of egg yolk phosphatidylcholine (EYPC) over aqueous salt solutions has been studied by m-doxyl stearic acid (m-DSA, m = 12 and 16) spin probe method. In disoriented EYPC bilayers the CnTMA salts decrease the orientational order parameter S33 of m-DSA evaluated from the powder pattern ESR spectra. This effect is maximal for C6TMA. In oriented EYPC bilayers prepared by the parallel-beam sputtering method and hydrated over saturated NaCl solution the order parameter S33 calculated from the angular dependence of the nitrogen hyperfine splitting is decreased in the presence of C6TMA. The order parameter S11 obtained from the angular dependence of line positions indicates deviation of m-DSA motion from axial symmetry. C6TMA increases the probability of gauche conformations of the lipid chains by about 13-14%, and decreases the effective energy difference between the trans and gauche conformations by about 420-480 J/mol, at molar ratio of EYPC/C6TMA = 2:1. The angular dependence of linewidths is analysed by employing a theory of spin relaxation based on the strong collision model for molecular reorientations. The correlation time tau 0 of the reorientation of an axis orthogonal to the doxyl ring of 16-DSA is decreased in the presence of C6TMA, while that of 12-DSA is not influenced by it. The ratio of tau 2/tau 0 is increased in the presence of C6TMA for the both spin probes. The results are explained using the free-volume model of the CnTMA-EYPC membrane interaction. 相似文献
13.
Oxidized analogs of cholesterol (oxysterols) are produced through both enzymatic and non-enzymatic pathways and have been shown to perturb membrane properties in vitro and in vivo. In the present study, the membrane behavior of two naturally occurring oxysterols, 25-hydroxycholesterol and 7-ketocholesterol, was examined in two model systems. The presence of an additional oxygen moiety was found to alter membrane properties compared to native cholesterol and to each other in lipid monolayers, composed of either pure sterol or sterol–glycerophospholipid and sterol–sphingomyelin binary films, as well as in mixed multilamellar vesicles. The ability of oxysterols to condense phosphatidylcholine and sphingomyelin films, their capacity to cause changes in in-plane elasticity moduli, and their propensity to form detergent-resistant membrane domains were all found to be dependant on the location of the oxygen functionality in the oxysterol, the chemical nature of the phospholipid in the model systems, and the oxysterol/phospholipid ratio in the membrane. The findings described in this study with respect to their biophysical/biophysiological implications provide additional insight into the activity of cytotoxic oxysterols in model membranes. 相似文献
14.
The association of ethanol at physiologically relevant concentrations with lipid bilayers of different lipid composition has been investigated by use of isothermal titration calorimetry (ITC). The liposomes examined were composed of combinations of lipids commonly found in neural cell membranes: dimyristoyl phosphatidylcholine (DMPC), ganglioside (GM(1)), sphingomyelin and cholesterol. The calorimetric results show that the interaction of ethanol with fluid lipid bilayers is endothermic and strongly dependent on the lipid composition of the liposomes. The data have been used to estimate partitioning coefficients for ethanol into the fluid lipid bilayer phase and the results are discussed in terms of the thermodynamics of partitioning. The presence of 10 mol% sphingomyelin or ganglioside in DMPC liposomes enhances the partitioning coefficient by a factor of 3. Correspondingly, cholesterol (30 mol%) reduces the partitioning coefficient by a factor of 3. This connection between lipid composition and partitioning coefficient correlates with in vivo observations. Comparison of the data with the molecular structure of the lipid molecules suggests that ethanol partitioning is highly sensitive to changes in the lipid backbone (glycerol or ceramide) while it appears much less sensitive to the nature of the head group. 相似文献
15.
Interaction of filipin and amphotericin B with sterols in phosphatidylcholine membranes has been studied using various spin probes; epiandrosterone, cholestanone, phosphatidylcholine with 12-nitroxide or 5-nitroxide stearate attached to 2 position and also with tempocholine at the head group. Filipin caused increase in the fluidity of cholesterol-containing phosphatidylcholine membranes near the center, while it rather decreased the fluidity near the polar surface. On the other hand, amphotericin B did not apparently affect the fluidity. In the electron spin resonance spectrum of steroid spin probes in the antibiotic-containing membranes, both bound and free signals were observed and the association constant was calculated from the siganal intensity. In the binding of steroids with filipin, both 3 and 17 positions were involved, while the 17 position was less involved in the binding with amphotericin B. Phase change in the host membrane markedly affected the interaction of filipin with epiandrosterone probe. The bound fraction jumped from 0.4 to 0.8 on going to the crystalline state and increased further with decrease in temperature. The overall splitting of the bound signal also increased on lowering the temperature below phase transition. This change was attributed to aggregate formation of filipin-steroid complexes in the crystalline state. On the other hand, effect of phase transition was much smaller on the interaction of amphotericin B with the steroid probe. 相似文献
16.
Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers. 下载免费PDF全文
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC. 相似文献
17.
Protein/phospholipid interactions in the solubilized mitochondrial ubihydroquinone:cytochrome-c oxidoreductase (bc1 complex) were studied by spin-label electron-spin resonance and by 31P-NMR spectroscopy. Spin-labelled phospholipids were employed to probe the relative binding affinities of a number of phospholipids with regard to the significance of phospholipids for the activity and stability of this multisubunit complex. The protein was titrated with spin-labelled cardiolipin (1,3-bisphosphatidyl-sn-glycerol) and with the spin-labelled analogues of PtdCho and PtdEtn, both of which have been shown recently to elicit a substantial increase in electron-transport activity [Sch?gger, H., Hagen, T., Roth, B., Brandt, U., Link, T. A. & von Jagow, G. (1990) Eur. J. Biochem. 190, 123-130]. A simplified distribution model showed that neutral phospholipids have much lower protein affinity than cardiolipin. In contrast to the transient weak lipid binding detected by spin-label electron-spin resonance, 31P NMR revealed a tightly bound cardiolipin portion, even after careful delipidation of the complex. Considerable line narrowing was observed after phospholipase A2 digestion of the bound cardiolipin, whereas addition of SDS resulted in complete release. Relative proportions and line widths of mobile and immobilized lipids were obtained by deconvoluting the partially overlapping signals. The current results are discussed with reference to similar findings with other mitochondrial membrane proteins. It is assumed that activation by neutral phospholipids reflects a generalized effect on the protein conformation. Cardiolipin binding is believed to be important for the structural integrity of the mitochondrial protein complexes. 相似文献
18.
A Jonas 《Journal of lipid research》1979,20(7):817-824
The interaction of sonicated, small vesicles of egg phosphatidylcholine and cholesterol (2:1, mol/mol) with bovine high density serum lipoproteins was examined in terms of lipid transfer between both types of particles and the resulting changes in lipoprotein structure. Saturation of high density lipoprotein preparations with vesicle lipids gave final lipoprotein particles with essentially unchanged protein content and composition, unchanged cholesterylester and nonpolar lipid content, but with markedly increased phospholipid content (59% increas by weight) and moderately increased cholesterol content (20% increase by weight). The lipoproteins enriched in lipid were relatively uniform, spherical particles, 110 +/- 3.6 A in diameter (6 A larger than the original lipoproteins); they had a markedly decreased intrinsic protein fluorescence, a red-shifted fluorescence wavelength maximum, and more fluid lipid domains. These results indicate that the direct addition of excess lipids from membranes or other lipoproteins is a possible mechanism for lipid transfer to high density lipoproteins. Also they suggest a structural flexibility of high density lipoproteins that allows the addition of significant amounts of surface components. 相似文献
19.
Ruiz-Argüello MB Veiga MP Arrondo JL Goñi FM Alonso A 《Chemistry and physics of lipids》2002,114(1):11-20
Sphingomyelin hydrolysis by sphingomyelinase is essential in regulating membrane levels of ceramide, a well-known metabolic signal. Since natural sphingomyelins have a gel-to-fluid transition temperature in the range of the physiological temperatures of mammals and birds, it is important to understand the influence of the physical state of the lipid on the enzyme activity. With that aim, large unilamellar vesicles consisting of pure egg sphingomyelin (gel-to-fluid crystalline transition temperature ca. 39 degrees C) were treated with sphingomyelinase in the temperature range 10-70 degrees C. The vesicles were also examined by differential scanning calorimetry (DSC). Shingomyelinase was active on pure sphingomyelin bilayers, leading to concomitant lipid hydrolysis, vesicle aggregation, and leakage of aqueous liposomal contents. Enzyme activity was found to be much higher when the substrate was in the fluid than when it was in the gel state. Sphingomyelinase activity was found to exhibit lag times, followed by bursts of activity. Lag times decreased markedly when the substrate went from the gel to the fluid state. When egg phosphatidylcholine, or egg phosphatidylethanolamine were included in the bilayer composition together with sphingomyelin, sphingomyelinase activity at 37 degrees C, that was negligible for the pure sphingolipid bilayers, was seen to increase with the proportion of glycerophospholipid, while the latency times became progressively shorter. A DSC study of the mixed-lipid vesicles revealed that both phosphatidylcholine and phosphatidyletanolamine decreased in a dose-dependent way the transition temperature of sphingomyelin. Thus, as those glycerophospholipids were added to the membrane composition, the proportion of sphingomyelin in the fluid state at 37 degrees C increased accordingly, in this way becoming amenable to rapid hydrolysis by the enzyme. Thus sphingomyelinase requires the substrate in bilayer form to be in the fluid state, irrespective of whether this is achieved through a thermotropic transition or by modulating bilayer composition. 相似文献
20.
Interactions of N-stearoyl sphingomyelin with cholesterol and dipalmitoylphosphatidylcholine in bilayer membranes. 下载免费PDF全文
Differential scanning calorimetry and x-ray diffraction have been utilized to investigate the interaction of N-stearoylsphingomyelin (C18:0-SM) with cholesterol and dipalmitoylphosphatidylcholine (DPPC). Fully hydrated C18:0-SM forms bilayers that undergo a chain-melting (gel -->liquid-crystalline) transition at 45 degrees C, delta H = 6.7 kcal/mol. Addition of cholesterol results in a progressive decrease in the enthalpy of the transition at 45 degrees C and the appearance of a broad transition centered at 46.3 degrees C; this latter transition progressively broadens and is not detectable at cholesterol contents of >40 mol%. X-ray diffraction and electron density profiles indicate that bilayers of C18:0-SM/cholesterol (50 mol%) are essentially identical at 22 degrees C and 58 degrees C in terms of bilayer periodicity (d = 63-64 A), bilayer thickness (d rho-p = 46-47 A), and lateral molecular packing (wide-angle reflection, 1/4.8 A-(1)). These data show that cholesterol inserts into C18:0-SM bilayers, progressively removing the chain-melting transition and altering the bilayer structural characteristics. In contrast, DPPC has relatively minor effects on the structure and thermotropic properties of C18:0-SM. DPPC and C18:0-SM exhibit complete miscibility in both the gel and liquid-crystalline bilayer phases, but the pre-transition exhibited by DPPC is eliminated at >30 mol% C18:0-SM. The bilayer periodicity in both the gel and liquid-crystalline phases decreases significantly at high DPPC contents, probably reflecting differences in hydration and/or chain tilt (gel phase) of C18:0-SM and DPPC. 相似文献