首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ontogenetic patterns of volatile compounds identified in Dufour's gland extracts from queens and workers of the primitively eusocial sweat beeLasioglossum malachurum (K.) were compared. Only young unmated queens showed high proportions of isopentenyl esters, while macrocyclic lactones were dominant in old breeding queens, spring queens, and workers. In young queens the relative and absolute amounts of volatiles changed one day after mating. A discriminant analysis revealed significant differences in odor patterns of unmated and mated young queens. The fat body was the largest in young females, while eggs could be recorded only in breeding queens. Possible functions of different odor components in the investigated female groups are discussed.  相似文献   

2.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

3.
Honey bee queens have the ability to store sperm in spermathecae for fertilizing eggs throughout their life. To investigate mechanisms for sperm storage in Apis mellifera, we employed suppression subtractive hybridization (SSH) to find differentially expressed fragments in spermathecae between virgin queens and newly mated queens. A new gene, named SRP16, was obtained by joining the SSH products with 5′-RACE and 3′-RACE. SRP16 is predicted to encode a 41?kDa protein with 363 amino acid residues. Its expression was found in the spermathecae dominantly in honey bee queens but not in honey bee workers, with the highest expression found in spermathecae of virgin and newly mated queens. SRP16 expression was weak in other tissues of queens other than in the spermathecae and showed no obvious change with reproductive status of queens. The results suggest that SRP16 may play important roles in sperm storage and honey bee reproduction.  相似文献   

4.
Evidence from field wasps and bumblebees appoints the endocrine system as a mediator between dominance status and ovarian activity in primitively social Hymenoptera. In this comparative study on ecdysteroid titers in the highly social honey bee, Apis mellifera, and a stingless bee, Melipona quadrifasciata, we focussed on the relationship between the ecdysteroid titer, social conditions (presence or absence of the queen), and ovary activity. In contrast to bumblebees, ecdysteroid titers in honey bee and stingless bee workers were either not altered, or dropped to even lower levels after the queen was removed. We also did not detect differences between virgin queens and mated, egg laying queens. These results suggest that ecdysteroids may have lost most of their reproductive functions - yet gained functions in larval caste differentiation - as higher levels of social organization were attained in the evolution of social insects. The observation that ecdysteroid titers are transiently elevated in young workers adds a new, yet functionally still speculative facet to hormonal regulation in insect societies.  相似文献   

5.
In several poneroid ant species, mated workers alone undertake reproduction. The reproductive systems of such species have been examined extensively. However, few studies have investigated species with alate queens, which reproduce after shedding their wings. We compared body sizes and the numbers of ovarioles between queens and workers in the ant Cryptopone sauteri with alate queens. We also compared ovariole development between the castes to evaluate their reproductive systems. Approximately 60% of the nests collected were queenless. We often detected unmated queens in the nests throughout the year, but did not obtain strong evidence for their reproduction. Although significant differences were observed in the number of ovarioles and body characteristics between the queens and workers, the differences were not as prominent as those observed in Formicinae and Myrmicinae. We propose two alternative hypotheses, failure of nuptial flight or postponement of reproduction, to explain the presence of unmated queens in the nests.  相似文献   

6.
Relatively little is known about the temporal control of behavior of honey bee queens under natural conditions. To determine if mated honey bee queens possess diel rhythmicity in behavior, we observed them in glass-sided observation hives, employing two focal studies involving continuous observations of individual queens as well as a scan-sampling study of multiple queens. In all cases, all behaviors were observed at all times of the day and night. In four of the five queens examined in focal studies, there were no consistent occurrences of diel periodicity for any of the individual behaviors. A more encompassing measure for periodicity, in which the behaviors were characterized as active (walking, inspecting, egg-laying, begging for food, feeding, and grooming self) or inactive (standing), also failed to reveal consistent diel rhythmicity. Furthermore, there were no consistent diel differences in the number of workers in the queen's retinue. Behavioral arrhythmicity persisted across seasons and despite daily changes in both light and temperature levels. Both day and night levels of behavioral activity were correlated with daytime, but not with nighttime, ambient temperatures. The behavior of the one exceptional queen was not consistent: diurnal activity patterns were present during two 24-h observation sessions but arrhythmicity during another. Based on the behavior observed by all but one of the queens examined in this work, the arrhythmic behavior by the mated honey bee queen inside the colony appears to be similar to that exhibited by worker bees before they approach the age of onset of foraging behavior.  相似文献   

7.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

8.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

9.
Summary: Honey bee queens have been shown to mate with a high number of males, but the evolutionary advantage of this high degree of polyandry is still unclear. Mating data from a number of different Apis species and subspecies are needed to help explain polyandry in honey bees. Pupae of four colonies of Apis mellifera sicula from Sicily were genotyped on three polymorphic microsatellite loci. The genotypes of the queens and fathering drones from these colonies were deduced from the genotypes of the pupae. We found no evidence for polygyny, at least we can exclude more than one functional queen, even super-sister queens, if maternity contributions are equal. The four queens mated with at least 5 to 12 (mean: 9.3 - 3.0 SE) drones. We estimate the error in our determination of the mating frequency that is caused by limited genetic resolution of the marker loci to be less than 1 mating given that Hardy-Weinberg assumptions are satisfied. However, the drones the single queens mated with may be a non-random sample of the whole population, so that detection error may be more severe. The average pedigree relatedness among workers within the colonies was estimated to be 0.341. These results are within the range of those found in other A. mellifera subspecies and Apis species except A. dorsata. We speculate that mating frequency may be positively correlated with drone density.  相似文献   

10.
The oviposition potential of honey bee queens decreases with age, therefore it is important to replace old queens with younger ones on a periodic basis. However, queen replacement is problematic, especially in Africanized honey bee colonies, since many introduced queens are not accepted, and virgin queens are less easily accepted than are mated queens. We assessed the influence of genetic origin (queen mother) on the acceptance of queens, when they were introduced as virgins into Africanized honey bee colonies. For this purpose, 12 daughter queens from each of 11 mother queens with no degree of kinship among themselves were introduced. Introductions were made monthly, for 12 months, though the winter months of June and July were not included, as there is little brood and drones are rare in winter. There was some seasonal variation in the acceptance rates; generally there was greater acceptance in months with good honey flows. However, the acceptance of introduced queens was influenced by their origin. The rate of acceptance of daughter queens from the 11 different mother queens varied significantly, ranging from 33 to 75%. There appears to be a genetic influence of the mother queen on the introduced queen acceptance rate.  相似文献   

11.
Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens’ spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02 ppm) decreased sperm viability by 50%, 7 days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100 ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1 day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5 ppm) and imidacloprid (0.02 ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees.  相似文献   

12.
Honey bee (Apis mellifera L.) colonies with either European or Africanized queens mated to European or Africanized drones alone or in combination were tested for defensive behavior using a breath test. The most defensive colonies were those with European or Africanized queens mated to Africanized drones. In colonies where both European and Africanized patrilines existed, most of the workers participating in nest defense behavior for the first 30 s after a disturbance were of African patrilines. Nest defense behavior appears to be genetically dominant in honey bees.  相似文献   

13.
The ability of workers to produce male individuals is reported here for the first time in a species of the formicine ant genus Prolasius. We show that Prolasius advenus workers possess ovaries and demonstrate that they are able to produce adult males in queenless colonies. We also experimentally tested the influence of queen volatiles on the level of worker reproduction. Workers produced fewer eggs in treatments where they could perceive odors from queens. Some volatile compounds emitted by queens may thus have a signaling or inhibitory effect on worker reproduction. This effect of queen presence did not entirely stop worker reproduction, however, as adult males still emerged under these conditions. Worker-produced males were absent only in treatments with the physical presence of queens. Dissections of workers collected from queenright nests in the field revealed signs of egg-laying activity in more than half of individuals. Together, these results suggest that in nature P. advenus workers produce males at least in orphaned colonies or in situations where the physical presence of queens is limited.  相似文献   

14.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

15.
Extreme polyandry is a derived mating strategy that is uncommon in the Hymenoptera, but occurs in ecologically dominant taxa such as honey bees, leaf-cutter ants, and army ants. Honey bee queens that mate with many males confer a selective advantage to their colonies in part by generating genetically diverse foraging workforces that are more active than those of colonies with singly mated queens. These foragers produce more waggle-dance signals, each circuit of which attracts larger audiences of dance followers. We investigated the role that dancer-produced volatiles (“waggle-dance compounds”) play in facilitating signal exchange when mating frequency, and thus patriline number, differs. We found a 6- to 200-fold increase in quantities of three of four waggle-dance compounds in the airspace of multiple-patriline versus single-patriline colonies. Possible worker-level mechanisms underlying this difference were investigated by sampling compounds from dancers over similar intervals at the start of dances. The best-supported explanation was the presence of greater quantities of compounds on the abdomens of foragers as dance length increased rather than differences in quantities sampled between colony types or among patrilines. Workers who danced more frequently attracted more followers to the initial circuits of their first dance, but following response was not linked to quantities of compounds on dancers. While honey bee colonies with multiple patrilines have greater quantities of dancer-produced volatiles in them, high concentrations of these chemicals probably do not attract more dance followers to specific dancers. Thus, the role that these compounds may play in enhancing colony productivity requires clarification.  相似文献   

16.
Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.  相似文献   

17.
18.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

19.
In social insect colonies, queen-produced pheromones have important functions in social regulation. These substances influence the behavior and physiology of colony members. A queen-produced volatile that inhibits differentiation of new neotenic reproductives was recently identified in the lower termite Reticulitermes speratus. However, there are no known queen-specific volatiles of this type in any other termite species. Here, we report volatile compounds emitted by live queens of the higher termite Nasutitermes takasagoensis. We used headspace gas chromatography mass spectroscopy (HS GC-MS) to analyze volatiles emitted by live primary queens, workers, soldiers, alates, and eggs collected in a Japanese subtropical forest. Among 14 detected compounds, 7 were soldier-specific, 1 was alate-specific, 1 was egg-specific, and 1 was queen-specific. The queen-specific volatile was phenylethanol, which is different than the compound identified in R. speratus. The identification of this queen-specific volatile is the first step in determining its functions in higher termite social regulation. Comparisons of queen pheromone substances regulating caste differentiation among various termite taxa will contribute to a better understanding of the evolution of social systems in termites.  相似文献   

20.
Laidlaw HH  Page RE 《Genetics》1984,108(4):985-997
Sperm usage by queen honey bees was examined by progeny analyses using six phenotypically distinct genetic markers. No evidence was found for sperm displacement or precedence. All queens used the sperm of all males that inseminated them during all sampling periods. Sperm usage, as measured by phenotypic frequencies, did fluctuate nonrandomly but did not result in abnormally high representation of a single phenotype or the elimination of other phenotypes as has often been suggested. The genetic relationships of workers within honey bee colonies are estimated from the data presented. Average genetic relatedness is shown to be low among colony nestmates and probably approaches 0.25 in colonies with naturally mated queens. There is no evidence for elevated relatedness among colony subfamilies due to nonrandom fluctuations in sperm usage by queens or for numerical dominance of any subfamilies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号