首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

2.
Abstract— Guinea pig brain nerve-ending particles (synaptosomes) were incubated with [32P]orthophosphate in a medium with or without 10−4M-acetylcholine and 10−4 M-eserine. Phospholipids were then extracted and separated by chromatography. About 60 per cent of the 32P was found in phosphatidic acid and about 20 per cent in triphosphoinositide. Acetylcholine significantly increased the specific radioactivity of phosphatidic acid but had no effect on that of phosphatidylinositol or the nucleotide fraction. Labelling of the other phospholipids, including diphosphoinositide and triphosphoinositide, was not altered significantly by acetylcholine. Labelling of the nucleotide fraction and the polyphosphoinositides reached a peak at 40 min, that of phosphatidic acid at 80 min, while that of phosphatidylinositol was still rising at 160 min.  相似文献   

3.
Abstract: Awake adult male rats were infused intravenously with [3H]arachidonic acid for 5 min, with or without prior administration of an M1 cholinergic agonist, arecoline (15 mg/kg i.p.). Methylatropine was also administered (4 mg/kg s.c.) to control and arecoline-treated animals. At 15 min postinfusion, the animals were killed, brains were removed and frozen, and subcellular fractions were obtained from homogenates of whole brain. Total radioactivity and radioactivity in various lipid classes were determined for each fraction following normalization for exposure by use of a unidirectional incorporation coefficient, k brain. In control animals, incorporation was greatest in synaptosomal and microsomal fractions, accounting for 50 and 30% of total label incorporated into membrane lipids, respectively. Arecoline increased incorporation in these two fractions by up to 400% but did not increase incorporation into the myelin, mitochondrial, or cytosolic fractions. Of the incorporated radioactivity, 50–80% was in phospholipid in microsomal and synaptosomal fractions, indicating that phospholipid is the major lipid affected by cholinergic stimulation. These results demonstrate that plasma [3H]arachidonic acid is preferentially incorporated into phospholipids of synaptosomal and microsomal fractions of rat brain. Cholinergic stimulation increases incorporation into these fractions, likely by activation of phospholipase A2 and/or C in association with acyltransferase activity. Thus, intravenously infused radiolabeled arachidonic acid can be used to examine synapse-mediated changes in brain phospholipid metabolism in vivo.  相似文献   

4.
Purified myelin, isolated from rat brain, was subfractionated into light, medium and heavy myelin. The metabolism of [3H] leucine in myelin subfractions was studied at intervals from 1 to 24 hours and from 18 hours to 85 days after the injection of 12-day-old rats. The metabolism of [14C] glucose in myelin subfractions was also examined during the 85 day interval. In addition, the development of each of these subfractions, as reflected by protein accretion, was determined.Between 13 and 97 days of age, the amount of the three myelin subfractions increased 10- to 44-fold. At 13 days of age the heavy subfraction accounted for the greatest percentage of myelin protein. However, beyond 13 days, light myelin predominated.The total 3H-radioactivity in the light, medium and heavy subfractions increased throughout most of the 85 day interval examined. The 3H specific radioactivity (3H dpm/μgram protein) of light myelin peaked at 12 hours after injection. The specific radioactivity of both 3H and 14C (14C dpm/μgram lipid) in light myelin declined beyond the initial time point in the long term (18 hour – 85 day) study. In contrast, the specific radioactivity of both 3H and 14C peaked in the medium and heavy subfractions at 4 days after injection of radioactive precursor.The possible existence of a membranous precursor to myelin is discussed.  相似文献   

5.
Abstract— [3H]Dexetimide specifically labels brain muscarinic receptors in vivo . After i.v. injection of labelled drug into rats, radioactivity specifically accumulates in brain regions containing muscarinic receptors but not in cerebellum. This accumulation is stereospecific, saturable and displaceable by unhbelled dexetimide. In contrast, [3H]levetimide, the inactive enantiomer, does not show such preferential uptake or stereospecific displacement.
An analytical approach was used to study the subcellular distribution of [3H]dexetimide binding sites. After differential centrifugation the binding sites are mainly recovered in the microsomal fraction from different brain regions but not from the cerebellum. After displacement the radioactivity is found in the supernatant. After equilibration in a density gradient the distribution pattern of [3H]dexetimide is bimodal, like that of 5'-nucleotidase, with a major peak in a region of low density.
When the microsomal fraction was treated with digitcnin, three groups of membrane were characterized by isopycnic centrifugation on the basis of their differential shift to higher densities. Evidence is provided that the postsynaptic membranes bearing muscarinic receptors belong to the class of plasma membranes. Finally, digitonin treatment may represent a useful tool to produce subfractions enriched in postsynaptic membranes which can now be identified biochemically in binding experiments.  相似文献   

6.
Abstract. 131Iododeoxyuridine (131IDU) was injected into normal and partially hepatectomized rats, and the specificity of incorporation of this thymidine analogue into liver DNA was determined 2, 24 and 48 hr following intramuscular injection. At 2 and 24 hr after 131DU injection, a major proportion of radioactivity in the liver was in the acid-soluble fraction, whereas 48 hr after injection the label in the acid-soluble fraction had decreased considerably. In liver obtained 2 hr after injection of 131IDU, only 1.8–16.6% of the total radioactivity were in DNA. If, however, the tissue was subjected to formalin fixation, the acid-soluble label was extracted selectively, and of the remaining radioactivity 64–88% was in DNA. Therefore, the radioactivity that is not extracted by formalin may be used as a measure of DNA synthesis at the time of injection of 131IDU, thus obviating time-consuming biochemical fractionation procedures.  相似文献   

7.
Abstract— When [2-3H]glycerol was injected intracranially into young rats, it was presented as a pulse label, leaving the brain rapidly and giving up much of its labelled hydrogen to water. [2-3H]glycerol was efficiently incorporated into brain lipids, especially into choline and ethanolamine phospholipids. Following injection of a mixture of [3H]- and [14C]-labelled glycerol, the ratio of 3H to 14C in the phospholipids of both whole brain and the microsomal fraction decreased as a function of time after injection. This finding indicated less recycling of the tritium label. This lack of recycling was further indicated by the finding that 94 per cent of the tritium label of phosphatidyl choline was in the glycerol portion of the molecule rather than in the fatty acids. At 2 weeks following injection with [3H]glycerol, 93 per cent of the total radioactivity in brain appeared in the lipid fraction. In contrast, following injection with [14C]glycerol, only 57 per cent of the radioactivity appeared in lipid, with about 20 per cent in protein.  相似文献   

8.
The formation of spicules and development of pluteus arms in sea urchin embryos were strongly blocked by H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride) but were not affected by HA1004 ( N -(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride). Archenteron formation occurred normally in the presence of these compounds. Late gastrulae (28 hr after fertilization) were exposed to 32Pi for 30 min at 20°C, and then dissociated and their primary mesenchyme cells with spicules, embryo-wall cells and archenteron cells were separated. Then, the radioactivities in the protein fractions of these separated cells were measured. Results showed that culture of embryos with H-7 strongly inhibited 32p incorporation into proteins in primary mesenchyme cells but caused little inhibition of its incorporations in embryo-wall cells and archenteron cells. The effective concentrations of H-7 for inhibition of 32p incorporation were within the range that blocked spicule formation and growth of pluteus arms in embryos. HA1004 only slightly inhibited 32p incorporation into protein in mesenchyme cells, embryo-wall cells and archenteron cells of embryos exposed to 32Pi. Protein kinase C activity was detectable only in isolated primary mesenchyme cells associated with spicule structures. These suggest that phosphorylation of proteins by protein kinase C contributes to the formation of spicule structures.  相似文献   

9.
THE BIOSYNTHESIS OF CHOLESTEROL AND OTHER STEROLS BY BRAIN TISSUE   总被引:1,自引:1,他引:0  
Abstract— The distribution of [14C]-labeIled material into subcellular fractions of 15-day-old rat brain was studied as a function of time after intracerebral injection of [2-14C]mevalonic acid. As previously shown for adult brain, the data indicated the microsomal fraction to be the site of sterol biosynthesis. The synaptosomal fraction exhibited a marked early uptake of [14C]-nonsaponifiable material. Total radioactivity in both myelin and myelin-like fractions remained low in comparison to that in the other subcellular fractions at all time periods examined. At 2 h after injection, labelled digitonin-precipitable material was demonstrable in all subcellular fractions. Examination of the [14C]-labelled nonsaponifiable material by thin-layer chromatography indicated the rapid appearance of labelled 4-desmethyl sterol in all subcellular fractions, with the most rapid appearance in the myelin fraction, followed in decreasing order by microsomal, synaptosomal, and mitochondrial fractions. Examination of [14C] digitonin-precipitable material from each fraction by the dibromide method demonstrated that although 4-desmethyl sterol appeared quickly, the formation of cholesterol was slow in all fractions, an effect that had been reported earlier for adult brain.  相似文献   

10.
We investigated the degree to which developing fruit compete directly with leaves for mineral nutrients, e.g. phosphate coming up from the roots. When soybean ( Glycine max (L.) Merrill cv. Anoka) explants cut at mid-late podfill were given a 15-min pulse of 32Pi via the cut stem and then transferred to distilled water, 75% of the 32P accumulated in the leaves and 21% in stem and petiole during the first hour. The amount of 32P entering the seeds was low (1%) initially, but thereafter increased to 30% in 48 h. An accumulation of 32P in the seed coats preceded its entry into the embryos. Disruption (with hot steam) of the phloem between the leaf and the pods after pulse labelling indicated that more than 80% of the 32Pi pulse moved to the leaf before redistribution to the pods. Increasing "sink" size by adjusting the pod load from 1 to 2–3 did not increase the 32P accumulated by the pods proportionally. Conversely, excision of the seeds after pulse labelling did not prevent translocation of 32P out of the leaves. These results suggest that the rate of transport of phosphate to the pods at mid-late podfill is controlled primarily by factors in the leaves. The results are consistent with the observation that the relative size of the sink (pod load) does not regulate leaf senescence.  相似文献   

11.
Phosphorus translocation in salt-stressed cotton   总被引:6,自引:0,他引:6  
The effect of salinity on plants has usually been studied at high inorganic P concentration ([Pi]) in the nutrient solution, and salinity × Pi interactions have been examined at much higher [Pi] than found in soil solutions. Short-term 32Pi experiments were carried out to study the effect of salinity (150 m M NaCl) on phosphorus translocation in cotton plants ( Gossypium hirsutum L. cv. Acala SJ-2) grown in nutrient solutions containing 10 μ M [Pi]. The effect of additional Ca to a concentration of 10 μ M was also tested. Salinity inhibited 32P translocation from root to shoot. This inhibition was more evident at higher [Pi] in the root medium. Increasing [Pi] 33-fold in the solution resulted in a 4.3-fold increase in [32P] in the root under saline conditions, but only in a 1,8-fold increase in the shoot. In older shoot tissues total [P] was elevated in the salinized plants. In the young tissues, however, total P concentration was higher in control plants. Inhibition of 32P translocation by salinity was greater from root to young leaves than to mature shoot tissues. Salinity also decreased 32P recirculation from the cotyledons to the young leaf. Inhibition by salinity of both 32P translocation and recirculation to young leaves was fully reversed by increasing Ca supply from 1 to 10  相似文献   

12.
ACETYLCHOLINE METABOLISM AND CHOLINE UPTAKE IN CORTICAL SLICES   总被引:4,自引:6,他引:4  
Abstract— The uptake of [14C]choline was studied in cortical slices from rat brain after their incubation in a Krebs-Henseleit medium containing either 4.7 m m -KCl (low K), 25 m m -KCl (high K) or 25 m m -KCl without calcium (Ca free, high K). With 0.84 μ m -[14C]choline in the medium the uptake per gram of tissue was 0.62 nmol after incubation in low K medium, 1.13 nmol after incubation in high K medium and 0.78 nmol after incubation in a Ca free, high K medium. The differences caused by potassium were greater in fraction P2 than in fractions P1 and S2. With 17 and 50 μ m -[14C]choline in the medium greater amounts of [14C]choline were taken up, but the effect of potassium on the uptake almost disappeared. The amount of radioactive material in fraction P2 followed Michaelis-Menten kinetics with K m values of 2.1 and 2.3 μ m after incubation in low and high K medium, respectively. Hemicholinium-3 only slightly inhibited choline uptake from a medium with 0.84 μ m -[14C]choline, but it abolished the extra-uptake induced by high K medium. The radioactivity in the slices consisted mainly of unchanged choline and little ACh was formed after incubation in low K medium, but after incubation in high K medium 50% of the choline taken up was converted into ACh. The hemicholinium-3 sensitive uptake of choline, the conversion of choline into ACh and the synthesis of total ACh, were stimulated about 7–8-fold by potassium. It is concluded that in cortical slices from rat brain all choline used for the synthesis of ACh is supplied by the high-affinity uptake system, of which the activity is geared to the rate of ACh synthesis.  相似文献   

13.
—Myelin preparations from the whole brains of 16-day-old rats and from cortical regions and brainstem, respectively, of 40-day-old rats were separated into light, medium and heavy subfractions on a discontinuous sucrose gradient by a procedure previously used for whole adult rat brain (Matthieu, et al., 1973). The total dry weight of myelin recovered from the 16-day-old rats was only 2·4mg/g fresh brain in comparison to 20 mg from adult brains. In 16-day-old rat brains, the percentage of the total myelin protein in the light fraction was higher than that found in adult brains; the percentage in the medium fraction was only one-third that in adults; while the percentage in the heavy fraction was about the same at both ages. The heavy fraction from the 16-day-old rats contained less basic protein and proteolipid than the light fraction, and the levels of the 2′3′-cyclic nucleotide 3′-phosphohydrolase (CNP) and glycoprotein were less than half those in the light and medium fractions. Double labelling experiments with radioactive fucose indicated that the major labelled glycoprotein in the heavy and medium fractions had a slightly higher apparent mol. wt than that in the light fraction. Electron microscopy showed much readily identifiable, compact myelin in the light and medium fractions from the 16-day-old rats, whereas the heavy fraction contained more single membranous structures and much less multilamellar myelin. The yield of myelin/g fresh wt from brainstem of 40-day-old rats was 4-fold higher than from cortical regions, and the percentage recovered in the light fraction was greater in the brainstem. In both regions basic proteins decreased from the light to the heavy fraction, whereas high mol. wt proteins, the glycoprotein and CNP increased. The biochemical and morphological results suggest that in both 16-day-old and young adult rats the light fraction is enriched multilamellar, compact myelin. In contrast, the heavy fraction at both ages is enriched in loose, uncompacted myelin and myelin-related membranes, although the heavy fraction from 16-day-old rats also may be substantially contaminated with membranes which are unrelated to myelin.  相似文献   

14.
Abstract— Brain slices were incubated with [3H]GABA in a medium containing aminooxyacetic acid to prevent metabolism of [3H]GABA by GABA-glutamate transaminase. The slices, which rapidly accumulated radioactivity, were then continuously perfused and the efflux of [3H]GABA from the tissue was measured. The spontaneous efflux of [3H]GABA consisted of an initial rapid phase followed by a much slower release of [3[H]GABA. After 40 min perfusion 90 per cent of the radioactivity remained in the tissue.
The slices were depolarized by electrical stimulation or by perfusion with a medium containing a high potassium concentration (40 mM). These procedures caused a striking increase in the efflux of [3H]GABA. The increased efflux produced by potassium, but not that produced by electrical stimulation, was dependent on calcium ions in the medium. The effect of electrical stimulation on [3H]GABA release was considerably reduced by a raised concentration (10 mM) of magnesium in the medium.
High potassium concentrations and electrical stimulation did not cause an increase in the efflux of [14C]urea, L-[3H]leucine or [14C]α-amino-isobutyric acid from brain slices. These results are consistent with the suggestion that GABA may be an inhibitory transmitter in the cerebral cortex.  相似文献   

15.
Injection of 14C-proline into the tadpole causes labeling of protein in the collagen fraction of the thigh bone and tail fin. The radioactivity of the 14C-hydroxyproline residue is about 26% of the total radioactivity in the 14C-labeled protein of the collagen fraction in the thigh bone as well as in the tail fin. In 14C-proline-loaded tadpoles into which prolactin has been injected, the radioactivity in the collagen fraction in these tissues is markedly higher than that in control animals. In thyroxine-treated tadpoles, the 14C-radioactivity of the collagen fraction in the thigh bone is always higher than that of the controls, but it is markedly low in the tail fin. During the incubation of thigh bone and tail fin isolated from 14C-proline-loaded tadpoles, low molecular weight materials containing 14C-hydroxyproline are released from the 14C-labeled protein of these tissues. The rate of 14C-hydroxyproline release, which represents the rate of collagen breakdown, is higher in thigh bone and tail fin isolated from thyroxine-treated tadpoles and is markedly lower in these tissues isolated from prolactin-treated tadpoles than in those isolated from controls. In these tissues, the high rate of collagen breakdown in thyroxine-treated tadpoles is reduced by prolactin injection.  相似文献   

16.
Abstract— The fraction that sediments between 2 × 105 g -min and 6 × 106 g -min from dilute dispersions of rat brain in 0.32 m -sucrose is a microsomal fraction with very little contamination by myelin. A crude microsomal fraction prepared in the same way from rat spinal cord contains more myelin than microsomes. Centrifugation of the crude microsomal fraction in 0.85 m -sucrose gave a floating fraction, an infranatant fraction (purified microsomes) and a small pellet. The purified microsomes contained very little myelin as judged by electron microscopy and polyacrylamide gel electrophoresis. The lipid composition resembled that of spinal cord myelin except that the purified microsomes contained relatively less cholesterol and ethanolamine plasmalogens. The content of galactolipids was much greater in spinal cord microsomes than in brain microsomes. The spinal cord CDP-ethanol-amine:diglyceride ethanolaminephosphotransferase activity (EC 2.7.8.1) was concentrated in the purified microsomes.
A spinal cord myelin fraction isolated from the 2 × 105 g -min pellet was quite pure as judged by electron microscopy, enzyme activities and polyacrylamide gel electrophoresis. No NADPH-cyto-chrome c reductase activity (EC 1.6.2.3) could be detected in the purified myelin. The ethanolaminephosphotransferase specific activity was about 5% of that found in the purified microsomal fraction. The protein content was 25% by weight for spinal cord myelin and 31% for brain myelin. Of the total spinal cord 2',3'-cyclic nucleotide-3'-phosphohydrolase activity, 16% was lost from the crude myelin during purification, 21% was recovered in the purified myelin, and 11% was found in the floating fraction from the crude microsomes. The purified myelin and microsomal fractions from spinal cord were relatively pure. Additional myelin was recovered in the floating fraction from the crude microsomes.  相似文献   

17.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

18.
Lemna gibba plants were incubated aseptically on medium containing labelled 10-7 M indole-3-acetic acid (IAA-1-14C). Most of the radioactivity disappeared from the culture medium during a 24 h light period. A high percentage of the loss was due to photolysis and only a low percentage of the radioactivity was recovered in the plants. Uptake of 14C by the plants was strongly stimulated by light. The radioactivity taken up by the plants was the sum of photosynthetically taken up 14CO2 and 14C taken up in IAA. Analyses with the indolo-α-pyrone fluorescence method revealed that the free IAA content was almost the same in plants grown in control and in IAA media for 5 h, whereas the amount of IAA which could be liberated by alkaline hydrolysis was doubled by the presence of IAA in the medium.  相似文献   

19.
Effects of Monensin on Assembly of Po Protein into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

20.
Abstract: The effect of an inhibitor of N -glycosylation of glycoproteins, tunicamycin, on synthesis of PNS myelin proteins was investigated in vitro by using chopped sciatic nerves or spinal roots of 21-day-old Wistar rats. Tunicamycin when incubated with these nerves in the presence of 3H-labeled fucose, mannose, or glucosamine inhibited the uptake of radioactivity into myelin proteins including some high-molecular-weight proteins, P0, 23K protein, and 19K protein by amounts ranging from 42 to 79%. Uptake of 14Camino acid mixture was inhibited much less by tunicamycin, but a new radioactive protein peak appeared when the protein mixtures had been separated by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. This protein ran directly in front of the P0 peak, did not correspond to any bands stained by Fast green, and was not labeled by fucose. This peak appeared in increasing larger proportions with progressive time of incubation of nerves with 3H amino acids in the presence of tunicamycin. The new protein, which cross-reacts with P0 antiserum, was tentatively identified as a nonglycosylated P0 protein that appears to be almost as well incorporated as P0 into the subcellular fraction containing myelin. At this time it is not possible to determine whether the unglycosylated P0 is actually assembled into a site and configuration like that of P0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号