首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Asparagine synthetase cDNAs containing the complete coding region were isolated from a human fibroblast cDNA library. DNA sequence analysis of the clones showed that the message contained one open reading frame encoding a protein of 64,400 Mr, 184 nucleotides of 5' untranslated region, and 120 nucleotides of 3' noncoding sequence. Plasmids containing the asparagine synthetase cDNAs were used in DNA-mediated transfer of genes into asparagine-requiring Jensen rat sarcoma cells. The cDNAs containing the entire protein-coding sequence expressed asparagine synthetase activity and were capable of conferring asparagine prototrophy on the Jensen rat sarcoma cells. However, cDNAs which lacked sequence for as few as 20 amino acids at the amino terminal could not rescue the cells from auxotrophy. The transferant cell lines contained multiple copies of the human asparagine synthetase cDNAs and produced human asparagine synthetase mRNA and asparagine synthetase protein. Several transferants with numerous copies of the cDNAs exhibited only basal levels of enzyme activity. Treatment of these transferant cell lines with 5-azacytidine greatly increased the expression of asparagine synthetase mRNA, protein, and activity.  相似文献   

2.
UV-irradiation induces an exponential increase in the frequency of mutation from asparagine requirement to asparagine non-requirement in Jensen sarcoma cells grown in vitro. The corrected mutation frequency increases from the spontaneous rate of 5.1·10?6 per cell to 1248·10?6 per cell with a dose of 180 erg/mm2 of 254 nm UV A substantial increase was oberved even without correction for survivors, and no significant difference was observed in the UV sensitivity of asparagine-requiring and non-requiring Jensen clones. When Jensen cells were plated at low densities in a feeder layer of LMTK-cells inactivated by HAT medium, an increase in the cloning ability of the former was observed as compared to appropriate controls without the feeder layer, but the increase was constant over all doses of UV tested. Revertants are stable and possess measurable asparagine synthetase.It is concluded that UV is an extremely effective mutagen in this system.  相似文献   

3.
Variations in ploidy do not affect the spontaneous mutation rate to asparagine non-requirement in Jensen rat sarcoma cells cultivated in vitro.  相似文献   

4.
Asparagine-requiring Jensen and Walker rat tumor cells and their asparagine-independent variants have been analyzed. The following results were obtained: (1) Both cell lines have very low levels of asparagine synthetase, and non-requiring revertants isolated from these lines have elevated levels of the enzyme. (2) No differences in chromosome number were detected between the parent Jensen line and five Jensen non-requiring revertants isolated from it. (3) Both Jensen and Walker cells undergo asparagineless death when deprived of this amino acid, although the Jensen cells do so at a more rapid rate. (4) Jensen requiring lines are at a selective advantage when grown in competition with non-requiring variants in complete medium, and their growth rate is more rapid when grown separately. The selective coefficients for the variant with respect to the asparagine-requiring parent ASN(-) line were 0.94 for the competition experiments and 0.83 for growth rate estimates. (5) A somatic cell hybrid between Chinese hamster cells (which require asparagine at low densities, and posses measurable synthetase activity) and the Walker line was found to be asparagine-independent, and it possessed enzyme levels equivalent to the hamster parent. The results of these investigations suggest a parallel with microbial auxotrophic mutants and can be understood in terms of alterations within nuclear structural genes.  相似文献   

5.
The resistance to L-asparaginase (ASNase) has been associated to the overexpression of asparagine synthetase (AS), although the role played by other metabolic adaptations has not been yet defined. Both in ASNase-sensitive Jensen rat sarcoma cells and in ARJ cells, their ASNase-resistant counterparts endowed with a five-fold increased AS activity, ASNase treatment rapidly depletes intracellular asparagine. Under these conditions, cell glutamine is also severely reduced and the activity of glutamine synthetase (GS) is very low. After 24 h of treatment, while sensitive cells have undergone massive apoptosis, ARJ cells exhibit a marked increase in GS activity, associated with overexpression of GS protein but not of GS mRNA, and a partial restoration of glutamine and asparagine. However, when ARJ cells are treated with both ASNase and L-methionine-sulfoximine (MSO), an inhibitor of GS, no restoration of cell amino acids occurs and the cell population undergoes a typical apoptosis. No toxicity is observed upon MSO treatment in the absence of ASNase. The effects of MSO are not referable to depletion of cell glutathione or inhibition of AS. These findings indicate that, in the presence of ASNase, the inhibition of GS triggers apoptosis. GS may thus constitute a target for the suppression of ASNase-resistant phenotypes.  相似文献   

6.
7.
The effect of several chemical agents on the mutation frequency from asparagine dependence to asparagine independence has been studied in Jensen sarcoma cells. It was found that ethylmethanesulfonate brought about a dramatic exponential increase, while nitrosoguanidine was not lighly effective as a mutagen, causing only a modest increase in mutation frequency, and quinacrine HCl was ineffective. The results presented here are compared with those obtained in other systems and with our previous work on the effects of UV on mutation induction in the asparagine system. They suggest that the basis of the asparagine requirement of mammalian cell lines resides in a specific genetic alteration in nuclear DNA which is corrected by the mutagenic action of the agents tested here.  相似文献   

8.
In Chinese hamster ovary cells, the gene for asparagine synthetase, which spans 20 kilobase pairs, was found to contain a cluster of potential sites for CpG methylation in a 1-kilobase-pair region surrounding the first exon. Fourteen of the sites that could be assayed for methylation by MspI-HpaII digestions were found in this region, with an additional nine MspI sites spread throughout the remainder of the gene. The methylation status of the gene was analyzed in a series of cell lines that differed in the amount of asparagine synthetase activity. The level of expression showed a direct correlation with the extent of methylation of a subset of the MspI sites found in the 5' region of the gene. The rest of the gene was completely methylated in most cell lines. Wild-type cells, which expressed a basal level of asparagine synthetase activity, were partially demethylated in the 5' region. In contrast, asparagine-requiring N3 cells, which lacked detectable mRNA for asparagine synthetase, were methylated throughout the entire gene. Spontaneous revertants of strain N3, selected for growth in asparagine-free medium, exhibited extensive hypomethylation of the asparagine synthetase gene. The methylation pattern of the gene in cell lines that overproduced the enzyme was also examined. Albizziin-resistant cell lines, which had amplified copies of the gene, were extensively demethylated in the 5' region. Overexpression of asparagine synthetase in beta-aspartyl hydroxamate-resistant lines without amplified copies of the gene was also correlated with DNA hypomethylation.  相似文献   

9.
Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B.  相似文献   

10.
Asparagine synthetase (L-aspartate:ammonia ligase (AMP-forming, EC 6.3.1.1) activity in rat liver increased when the animals were put on a low casein diet. The enzyme was purified about 280-fold from the supernatant of rat liver homogenate by a procedure comprising ammonium sulfate fractionation. DEAE-Sepharose column chromatography, and Sephadex G-100 gel filtration. The optimal pH of the enzyme was in the range 7.4-7.6 with glutamine as an amide donor. The molecular weight was estimated to be approximately 110,000 by gel filtration. Chloride ion was required for the enzyme activity. The apparent Km values for L-aspartate, L-glutamine, ammonium chloride, ATP, and Cl- were calculated to be 0.76, 4.3, 10, 0.14, and 1.7 mM, respectively. The activity was inhibited by L-asparagine, nucleoside triphosphates except ATP, and sulfhydryl reagents. It has been observed that the properties of asparagine synthetase from rat liver are not so different from those of tumors such as Novikoff hepatoma and RADA 1.  相似文献   

11.
Hybrids were produced between the Indian muntjak fibroblasts and rat Jensen sarcoma cell line (JF1) auxotrophic for asparagine. They were selected without cloning under conditions providing survival of parental Indian muntjak and hybrid cells. This allowed to compare the Indian muntjak chromosome variability in the parental cells and hybrids under identical culture conditions. The frequency of muntjak chromosome aberrations proved to de higher in the hybrids (up to 47%) than in the parental cells (6.5%). Predominant are chromosomal breaks and dicentrics. The latter are mainly formed by fusion of chromosomes 1 and 2. The most fragile are 1 and X-chromosomes. Chromosomal breaks are evenly distributed along chromosome 1, and "hot" points are observed in X-chromosome. Possible mechanisms of the Indian muntjak chromosome rearrangements induced by somatic cell hybridization are discussed.  相似文献   

12.
A high-performance liquid chromatography assay for asparagine synthetase   总被引:1,自引:0,他引:1  
A highly sensitive method for assaying asparagine synthetase and its glutaminase activity is presented. The amino acids L-asparagine, L-aspartate, L-glutamate, and L-glutamine, are separated by derivatization with o-phthaldialdehyde followed by reversed-phase high-performance liquid chromatography on an Altex ultrasphere-ODS C18 column. The elution is isocratic and the mobile phase used is 50 mM sodium acetate buffer (pH 5.9) with 30% methanol. This assay can easily detect picomoles of asparagine, which may be difficult to do with the other assays that have been described.  相似文献   

13.
In order to explore the structure--function relationship of the Escherichia coli asparagine synthetase A it was necessary to devise a system for overexpression of the gene and purification of the gene product. The E. coli asparagine synthetase A structural gene was fused to the 3' end of the human carbonic anhydrase II structural gene and overexpressed in E. coli. The gene product, a 66 kDa fusion protein, which exhibited asparagine synthetase activity, was purified in a single step by affinity chromatography and used as the antigen for the production of monoclonal antibodies. The monoclonal antibodies were screened by ELISA. Colonies were chosen which were positive for purified fusion protein and negative for purified human carbonic anhydrase II. The E. coli asparagine synthetase A gene was then overexpressed and the gene product was used without purification for the final screen. The antibodies selected were used for immunoaffinity chromatography to purify the recombinant overexpressed E. coli asparagine synthetase A. Thus, a procedure is now available so that asparagine synthetase A can be purified to homogeneity in a single step.  相似文献   

14.
The amino acid analog, albizziin, which acts as a competitive inhibitor of asparagine synthetase with respect to glutamine was used to isolate mutants of Chinese hamster ovary cells with alterations in levels of the target enzyme. These mutant lines have been characterized biochemically and genetically. Mutants selected in a single step are up to 40-fold more resistant to the drug than the parental line, express levels of asparagine synthetase activity 6-17-fold greater than that of wild type cells, and act co-dominantly in hybrids. Several classes of mutations can be distinguished on the basis of cross-resistance to beta-aspartyl hydroxamate, another amino acid analog. Studies on asparagine synthetase indicate that resistance to albizziin may be due to altered regulation of asparagine synthetase, structural mutations of the enzyme, and gene amplification.  相似文献   

15.
The activity of asparagine synthetase in Chinese hamster ovary (CHO) cells is increased in response to asparagine deprivation or decreased aminoacylation of several tRNAs (Andrulis, I. L., Hatfield, G. W., and Arfin, S. M. (1979) J. Biol. Chem. 254, 10629-10633). CHO cells resistant to beta-aspartylhydroxamate have up to 5-fold higher levels of asparagine synthetase than the parental line (Gantt, J. S., Chiang, C. S., Hatfield, G. W., and Arfin, S. M. (1980) J. Biol. Chem. 255, 4808-4813). We have investigated the basis for these differences in enzyme activity by combined radiochemical and immunological techniques. The asparagine synthetase of beef pancreas was purified to apparent homogeneity. Antibodies raised against the purified protein cross-react with the asparagine synthetase of CHO cells. Immunotitrations show that the amount of enzyme protein in physiologically or genetically derepressed CHO strains is proportional to the level of enzyme activity. Measurement of the relative rates of asparagine synthetase synthesis by pulse-labeling experiments demonstrate that the difference in the number of asparagine synthetase molecules is closely correlated with the rate of enzyme synthesis. In contrast, the half-life of asparagine synthetase in wild type cells and in physiologically or genetically derepressed cells is very similar. It appears that the increased levels of asparagine synthetase can be attributed solely to an increased rate of enzyme synthesis.  相似文献   

16.
The growth of Chinese hamster ovary cells in a complete medium lacking asparagine is inhibited by beta-aspartylhydroxamate. The inhibition is overcome by the presence of asparagine in the growth medium. beta-Aspartylhydroxamate inhibits the activity of both asparagine synthetase and asparaginyl-tRNA synthetase in vitro. beta-Aspartylhydroxamate-resistant clones of Chinese hamster ovary cells have been isolated and three of these have been characterized. One clone, AH12, is 3-fold more resistant to beta-aspartylhydroxamate than the parental line and has 2 times higher levels of asparagine synthetase activity. Strains AH2 and AH5 are 6- to 7-fold more resistant to beta-aspartylhydroxamate and have 5 times higher levels of asparagine synthetase. The regulation of the expression of asparagine synthetase is altered in all three resistant cell lines. Whereas asparagine synthetase activity varies 2- to 3-fold in response to the asparagine content of the medium or to the extent of aminoacylation of tRNALeu in the parental cells, the activity of asparagine synthetase in the resistant cells is elevated under all growth conditions. No significant changes in the Km for substrates, Ki for beta-aspartylhydroxamate, or thermal stability were found for the asparagine synthetase of the resistant cells. These variants should prove useful in understanding the mechanisms involved in regulating the levels of asparagine synthetase in mammalian cells.  相似文献   

17.
18.
Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. L-Asparagine augmented the oxidation of L-leucine, an effect possibly attributable to activation of 2-ketoisocaproate dehydrogenase. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   

19.
Thirteen stable hybridoma cell lines producing monoclonal antibodies specific for asparagine synthetase were established and one monoclonal antibody was chosen to produce an immunoaffinity resin for the purification of asparagine synthetase. Bovine pancreatic asparagine synthetase was purified to a specific activity of 395 nmol of Asn produced/min/mg. Electrophoresis of the affinity-purified enzyme in sodium dodecyl sulfate polyacrylamide gels resulted in a single Mr = 54,000 polypeptide. Prior cross-linking with dimethyl suberimidate resulted in a band at Mr = 52,500 (monomer) and two additional bands at Mr = 97,000 and 98,000 (dimers), suggesting the possibility of a heterogeneous enzyme population with slight differences in subunit composition. The ratio of Gln-dependent and NH3-dependent asparagine synthetase activities was constant for immunoaffinity-purified enzyme, but the ratios of glutaminase activity to synthetase activities varied, suggesting separate aspartate and glutamine binding sites. The monoclonal antibodies were tested as inhibitors of the Gln-dependent and NH3-dependent asparagine synthetase activities as well as for inhibition of the glutaminase activity of the enzyme. Two antibodies inhibited Gln- and NH3-dependent synthesis of asparagine, but did not affect the glutaminase activity of immunoaffinity-purified asparagine synthetase. A third monoclonal antibody inhibited Gln-dependent synthesis of asparagine and glutaminase activity, but activated NH3-dependent asparagine synthetase activity. These data are discussed in terms of multiple substrate binding domains within the asparagine synthetase molecule.  相似文献   

20.
D M Maul  S M Schuster 《Life sciences》1982,30(12):1051-1057
Methotrexate was found to stimulate asparagine synthetase activity in vivo by approximately six-fold in rat liver. The maximum effect of methotrexate on hepatic asparagine synthetase activity was observed sixteen hours after intraperitoneal injection of the drug. Cycloheximide, like methotrexate, is a protein synthesis inhibitor and was used to determine that asparagine synthetase activity was not preferentially stimulated under stress. As expected, hepatic asparagine synthetase activity falls markedly with the decreased protein synthesis caused by injection of cycloheximide. It is proposed that methotrexate inhibits serine-dependent glycine biosyn-thesis by decreasing the concentration of tetrahydrofolate for serine hydroxymethyltransferase. This leads to a stimulation of asparagine synthetase to provide nitrogen for asparagine-dependent glycine synthesis. This may provide an explanation of the observed chemotherapeutic synergism between asparaginase and methotrexate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号