首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the mitochondrial porin from Drosophila melanogaster   总被引:1,自引:0,他引:1  
Mitochondrial porin was isolated from the fruit fly Drosophila melanogaster at different developmental stages, starting from whole mitochondria. The porin from adults' mitochondria was fully characterized. The protein had a molecular mass of 31 kDa as judged from sodium dodecylsulfate electrophoretograms. It was very resistive against digestion with V8 proteinase of Staphylococcus aureus and a larger number of fragments were only obtained after digestion with papain. Drosophila porin showed little interaction with antibodies raised against mitochondrial porins from mammalia and Neurospora crassa, but a strong reactivity with antibodies raised against yeast porin. Reconstitution experiments with planar lipid bilayer membranes showed that the protein was able to form ion-permeable pores with a single-channel conductance of 0.41 nS in 0.1 M KCl. At low transmembrane voltages Drosophila porin had the properties of a general diffusion pore with an estimated effective diameter of about 1.7 nm and a small selectivity for anions over cations. Voltages larger than 20 to 30 mV resulted in a closure of the pore. The closed states of the pore were found to be cation-selective. The addition of a synthetic polyanion to the aqueous phase on one side of the membrane resulted in an asymmetric shift of the voltage dependence and the pore became already closed at very small voltages negative at the cis-side (the side of the addition of the polyanion).  相似文献   

2.
The outer mitochondrial membrane pore at a voltage above 20 to 30 mV can adopt a state of low conductance which may restrict free permeability of mitochondrial substrates. In order to obtain insight into the physiological meaning of this property we took advantage of the fact that the low conductance pore state could be induced by a polyanion in lipid bilayer membranes as well as in intact mitochondria. Upon reconstitution in artificial bilayers the pore in this substate became exclusively cation selective when the polarity of the applied voltage was negative on the cis-side. This behaviour of the pore would explain why induction of the low conductance pore state in intact mitochondria led to a complete inhibition of mitochondrial intermembranous kinases, such as creatine kinase and adenylate kinase, but not of peripheral kinases, for example hexokinase, when utilizing external ATP. The possibility that the inner membrane potential might be transduced to the outer membrane in the contact sites, suggests the existence of cation selective pores in these sites. This aspect may be important in the regulation of peripheral kinases like creatine kinase, nucleoside diphosphate kinase and adenylate kinase which are located behind the outer mitochondrial membrane.  相似文献   

3.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of purified mitochondrial porin from yeast and of detergent-solubilized mitochondrial outer membranes of a porin-free yeast mutant. The addition of the porin resulted in a strong increase of the membrane conductance, which was caused by the formation of ion-permeable channels in the membranes. Yeast porin has a single-channel conductance of 4.2 nS in 1 M KCl. In the open state it behaves as a general diffusion pore with an effective diameter of 1.7 nm and possesses properties similar to other mitochondrial porins. Surprisingly, the membrane conductance also increased in the presence of detergent extracts of the mitochondrial outer membrane of the mutant. Single-channel recordings of lipid bilayer membranes in the presence of small concentration of the mutant membranes suggested that this membrane also contained a pore. The reconstituted pores had a single-channel conductance of 2.0 nS in 1 M KCl and the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. This means that the pores present in the mitochondrial outer membranes of the yeast mutant have a much smaller effective diameter than normal mitochondrial porins. Zero-current membrane potential measurements suggested that the second mitochondrial porin is slightly cation-selective, while yeast porin is slightly anion-selective in the open state but highly cation-selective in the closed state. The possible role of these pores in the metabolism of mitochondria is discussed.  相似文献   

4.
A synthetic polyanion has been found to modulate the properties of the mitochondrial outer membrane channel, VDAC. This 10 kDa polyanion, first synthesized and described by Konig and co-workers, is a 1:2:3 copolymer of methacrylate, maleate, and styrene. It had been shown to interfere with the access of metabolites to the mitochondrial inner spaces. Here we show that, at nanomolar levels, the polyanion increases the voltage dependence of VDAC channels over 5-fold. Some channels seem to be totally blocked while others display the higher voltage dependence and are able to close at very low membrane potentials (5 mV). At 27 micrograms/ml polyanion, VDAC channels are closed while inserted into liposomes in the absence of any applied potential. The closed state of VDAC induced by the polyanion has similar properties to the closed state induced by elevated membrane potentials. The physical size of the polyanion-induced closed state (in VDAC-containing liposomes) is about 0.9 nm in radius. How this estimate fits with estimates of the channel's open state and estimated volume changes between the open and closed states, is discussed.  相似文献   

5.
A porin preparation from Escherichia coli 0111:B4 consisting of Omp F and Omp C (with Omp F in excess) was purified by salt extraction procedures and investigated in bilayer lipid membranes formed according to the Montal-Mueller technique. The porin preparation was added to the KCl electrolyte compartment of the Montal-Mueller cell which was connected to the voltage source. As the porin incorporated into the membrane, asymmetric, voltage-gated ion channels were formed. Transmembrane voltages greater than +50 mV (measured with respect to the side of porin addition) caused channel closing, while negative voltages, on the other hand, had no effect on channel behaviour but did increase the rate of porin incorporation at higher voltages. With porin added to both compartments voltage gating no longer occurred. Single-channel conductances corresponded to effective pore diameters of 1.5 nm for opening events and 1.18 nm for channel closing events. The number of charges involved in gating was approximately 2.  相似文献   

6.
The opening and closing of the ompF porin from Escherichia coli JF 701 was investigated by reconstituting the purified protein into planar bilayer membranes. The electrical conductance changes across the membranes at constant potential were used to analyze the size and aggregate nature of the porin channel complexes and the relative number of opening and closing events. We found that, when measured at pH 5.5, the channel conductance diminished and the number of closing events increased when the voltage was greater than 100 mV. The results suggest that the number of smaller sized conductance channels increases above this potential. There was also an increase in the smaller subunits and in the closing events when the pH was lowered to 3.5, and these changes were further enhanced by increasing the voltage. We propose that both lowering the pH and elevating the potential across the membrane stabilize the porin in a conformation in which the subunits are less tightly associated and the subunits open in a non-cooperative manner. These same conditions also appear to stabilize the closed state of the pore.  相似文献   

7.
Porin was isolated and purified from mitochondria of Paramecium tetraurelia. The protein showed a single band of apparent Mr 37,000 on sodium dodecyl sulfate polyacrylamide electrophoretograms. The reconstitution of the protein into artificial lipid bilayer membranes revealed it to be a porin giving pores with an average single-channel conductance of 0.26 nS in 0.1 M KCl. This conductance is about half of that of other eukaryotic porins studied to date. The pore formed by the mitochondrial porin of Paramecium was found to be voltage-dependent and switched to a defined substrate at membrane voltages larger than 20 mV. In the open state the pore exhibited the characteristics of a general diffusion pore because the mobility sequence of the ions inside the pore was similar to that in the bulk aqueous phase. The effective diameter was estimated to be about 1.3 nm. The properties of the low conductance state of the pore were studied in detail. In this state the pore favored the passage of cations, in contrast to the open state which favored anions slightly. The possible role of the low-conductance state in the regulation of transport processes across the outer mitochondrial membrane and in mitochondrial metabolism is discussed.  相似文献   

8.
Porin of Dictyostelium discoideum was extracted from mitochondria with Genapol X-80 and was purified by hydroxyapatite and CM-cellulose chromatography. The purified protein displayed a single band of 30 kDa in SDS-polyacrylamide gel electrophoresis. The formation of channels in artificial lipid bilayer membranes defined its function as a channel-forming component. Its average single-channel conductance was 3.9 nanosiemens in 1 M KCl, which suggested that the effective diameter of the channel is approximately 1.7 nm at small transmembrane potentials. The channel displayed a characteristic voltage dependence for potentials higher than 20 mV. It switched to substates of smaller conductance and a selectivity different to that of the open state. The closed state was stabilized at low ionic strength. The cDNA sequence of mitochondrial porin from D. discoideum was determined. It showed little sequence similarities to other known mitochondrial porins. The functional similarity, however, was striking. Localization of the porin in the mitochondrial outer membrane was confirmed by immunogold labeling of cryosections of fixed cells.  相似文献   

9.
Hexokinase-binding protein and mitochondrial porin were isolated from rat liver mitochondria by different procedures. It was found that the hexokinase-binding protein made lipid vesicles permeable to ADP and formed asymmetric pores in lipid bilayer membranes identical to those obtained from the mitochondrial porin. On the other hand, the mitochondrial porin confers the ability to bind hexokinase. In addition, evidence is presented that both hexokinase-binding protein and mitochondrial porin bind glycerol kinase.  相似文献   

10.
Summary The three types of porin (matrix-proteins) fromSalmonella typhimurium with molecular weights of 38,000, 39,000 and 40,000 were reconstituted with lipid bilayer membranes either as a trimer or as an oligomer (complex I). The specific conductance of the membranes increased several orders of magnitude after the addition of the porins into the aqueous phase bathing the membranes. A linear relationship between protein concentration in the aqueous phase and membrane conductance was found. In the case of lower protein concentrations (10–12 m), the conductance increased in a stepwise fashion with a single conductance increment of 2.3 nS in 1m KCl. For a given salt the conductance increment was found to be largely independent of the particular porin (38 K, 39K or 40 K) and on the state of aggregation, although porin oligomers showed an up to 10 times smaller conductance increase in macroscopic conductance measurements. The conductance pathway has an ohmic current voltage characteristic and a poor selectivity for different alkali ions. Further information on the structure of the pores formed by the different porins fromSalmonella was obtained from the selectivity for various ions. From the permeability of the pore for large ions (Tris+, glucosamine+, Hepes_ a minimum pore diameter of 0.8 nm is estimated. This value is in agreement with the size of the pore as calculated from the conductance data for 1m KCl (1.4 nm for a pore length of 7.5 nm). The pore diameter may well account for the sugar permeability which has been found in reconstituted vesicles. The findings reported here are consistent with the assumption that the different porins form large aqueous channels in the lipid bilayer membranes and that the single condutance unit is a trimer. In addition, it is suggested that one trimer contains only one pore rather than a bundle of pores.  相似文献   

11.
The protein which can be labelled by low concentrations of dicyclohexylcarbodiimide in the Mr region of 30 000-35 000 has been purified from pig heart mitochondria with a high yield and as a single band of apparent Mr 35 000 in dodecyl sulphate-containing gels. The protein is not identical with the phosphate carrier as suggested before, since the two proteins behave differently during isolation. Incorporation of the isolated 35 kDa dicyclohexylcarbodiimide-binding protein into lipid bilayer membranes causes an increase of the membrane conductance in definite steps, due to the formation of pores. The specific pore-forming activity increases during the purification procedure. The single pore conductance is about 4.0 nS, suggesting a diameter of 1.7 nm of the open pore. The pore conductance is dependent on the voltage across the membrane. Anion permeability of the pore is higher than cation permeability. These properties are similar to those described for isolated mitochondrial and bacterial porins. It is concluded that the 35 kDa dicyclohexylcarbodiimide-binding protein from pig heart mitochondria is identical with porin from outer mitochondrial membrane.  相似文献   

12.
Mitochondrial porin, the outer membrane pore-forming protein, was isolated in the presence of detergents and converted into a water-soluble form. This water-soluble porin existed under nondenaturing conditions as a mixture of dimers and oligomers. The proportion of dimers increased with decreasing porin concentration during conversion. Water-soluble porin inserted spontaneously into artificial bilayers as did detergent-solubilized porin. Whereas the latter form had no specific requirements for the lipid composition of the bilayer, water-soluble porin inserted only into membranes containing a sterol, and only in the presence of very low concentrations of Triton X-100 (0.001% w/v) in the solution bathing the bilayer. The channels formed by water-soluble porin were indistinguishable from those formed by detergent-purified porin with respect to specific conductance and voltage dependence of conductance. Water-soluble porin bound tightly in a saturable fashion to isolated mitochondria. The bound form was readily accessible to added protease, indicating its presence on the mitochondrial surface. The number of binding sites was in the range of 5-10 pmol/mg of mitochondrial protein. Water-soluble porin apparently binds to a site on the assembly pathway of the porin precursor, since mitochondria whose binding sites were saturated with the water-soluble form did not import porin precursor synthesized in a cell-free system.  相似文献   

13.
Detergent-solubilized cell wall extracts of the gram-positive, strictly aerobic bacterium Nocardia asteroides contain channel-forming activity as judged from reconstitution experiments using lipid bilayer membranes. The cell wall porin was identified as a protein with an apparent molecular mass of about 84 kDa based on SDS-PAGE. The porin was purified to homogeneity using preparative SDS-PAGE. The 84-kDa protein was no longer observed after heating in SDS buffer. The presumed dissociation products were not observed on SDS-polyacrylamide gels. The cell wall porin increased the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine/phosphatidylserine mixtures by the formation of cation-selective channels, which had an average single-channel conductance of 3.0 nS in 1 M KCl. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated negative point charge effects on the channel properties. The analysis of the concentration dependence of the single-channel conductance using the effect of negative charges on channel conductance suggested that the diameter of the cell wall channel is about 1.4 nm. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The cell wall channel switched into substates, when the cis side of the membrane, the side of the addition of the protein, had negative polarity. Positive potentials at the cis side had no influence on the conductance of the cell wall channel. Received: 23 September 1998 / Accepted: 9 December 1998  相似文献   

14.
The creatine/phosphocreatine circuit provides an efficient energy buffering and transport system in a variety of cells with high and fluctuating energy requirements. It connects sites of energy production (mitochondria, glycolysis) with sites of energy consumption (various cellular ATPases). The cellular creatine/phosphocreatine pool is linked to the ATP/ADP pool by the action of different isoforms of creatine kinase located at distinct subcellular compartments. Octameric mitochondrial creatine kinase (MtCK), together with porin and adenine nucleotide translocase, forms a microcompartment at contact sites between inner and outer mitochondrial membranes and facilitates the production and export into the cytosol of phosphocreatine. MtCK is probably in direct protein-protein contact with outer membrane porin, whereas interaction with inner membrane adenine nucleotide translocase is rather mediated by acidic phopholipids (like cardiolipin) present in significant amounts in the inner membrane. Octamer-dimer transitions of MtCK as well as different creatine kinase substrates have a profound influence on controlling mitochondrial permeability transition (MPT). Inactivation by reactive oxygen species of MtCK and destabilization of its octameric structure are factors that contribute to impairment of energy homeostasis and facilitated opening of the MPT pore, which eventually lead to tissue damage during periods of ischemia/reperfusion.  相似文献   

15.
The porin of the outer membrane of rat-brain mitochondria was isolated and purified. The protein showed a single band of apparent Mr 35,500 on dodecyl sulfate-containing polyacrylamide gels. The incorporation of rat-brain porin into artificial lipid bilayer membranes showed that it is able to form pores with an average single-channel conductance of 400 pS in 0.1 M KCI. The pores were found to be voltage-dependent and switched to substrates at higher transmembrane potentials. The voltage-dependence of the rat brain pore was considerably smaller than that of the other known eukaryotic porins. The possible role of the rat-brain porin in the regulation of transport process across the outer mitochondrial membrane is discussed.  相似文献   

16.
Summary Whole mitochondrial membranes isolated fromNeurospora crassa were reconstituted into liposomes and patch clamped. Clear activity characteristic of the mitochondrial channel VDAC was found, namely: open state conductance of 650 pS (in 150mm KCl, 1mm CaCl2, 20mm HEPES, pH 7.2), voltage-dependent closure at both positive and negative potentials, change in conductance upon channel closure of about 450 pS in response to negative and positive potentials, and increased voltage dependence in the presence of König's polyanion. This is the first clear demonstration of VDAC single channels using the patch-clamp technique, even though others used this method before to study whole mitochondrial membranes and liposomes containing mitochondrial proteins. We also found one other channel with a conductance change of about 120 pS.  相似文献   

17.
A Triton X-100 extract from rat brain mitochondria was obtained using low detergent/protein ratio. From this extract a proteinaceous complex was purified; its molecular weight was as high as 880 kD. The complex contained both hexokinase and creatine kinase activity. When incorporated into phospholipid bilayer membranes, the complex formed a channel whose activity was different than the channel activity of purified porin isolated either by adsorption chromatography or by dissociation from protein complexes. A ligand of the mitochondrial benzodiazepine receptor (Ro5-4864) in submicromolar concentrations had an apparent influence on the kinetic behavior of enzymatic coupling of hexokinase and creatine kinase. It is suggested that the 880-kD complex is formed by mitochondrial contact sites. The role of the isolated protein complex in the formation of nonspecific permeability in mitochondria is discussed.  相似文献   

18.
The expression of bacterial porin in outer membranes of gram-negative bacteria and of mitochondrial porin or voltage-dependent anion channel (VDAC) in outer mitochondrial membranes (OMM) of eucaryotic cells was demonstrated about 15 years ago. However, the expression of VDAC in the plasmalemma (PLM) of transformed human B lymphoblasts has recently been indicated by cytotoxicity and indirect immunofluorescence studies. New data suggest that the expression of VDAC may be even more widespread. Different cell types express porin channels in their PLM and in intracellular membranes other than OMM. The functional expression of these channels may differ in the various compartments since recent experiments have demonstrated that the voltage dependence and ion selectivity of mitochondrial VDAC may be altered by their interaction with modulators. The present paper proposes a unifying concept for the ion-selective channels of cell membranes, in particular, those whose regulation is affected in cystic fibrosis.  相似文献   

19.
Porin, an intrinsic protein of outer mitochondrial membranes of rat liver, was synthesized in vitro in a cell-free in a cell-free translation system with rat liver RNA. The apparent molecular mass of porin synthesized in vitro was the same as that of its mature form (34 kDa). This porin was post-translationally integrated into the outer membrane of rat liver mitochondria when the cell-free translation products were incubated with mitochondria at 30 degrees C even in the presence of a protonophore (carbonyl cyanide m-chlorophenylhydrazone). Therefore, the integration of porin seemed to proceed energy-independently as reported by Freitag et al. [(1982) Eur. J. Biochem. 126, 197-202]. Its integration seemed, however, to require the participation of the inner membrane, since porin was not integrated when isolated outer mitochondrial membranes alone were incubated with the translation products. Porin in the cell-free translation products bound to the outside of the outer mitochondrial membrane when incubated with intact mitochondria at 0 degrees C for 5 min. When the incubation period at 0 degrees C was prolonged to 60 min, this porin was found in the inner membrane fraction, which contained monoamine oxidase, suggesting that porin might bind to a specific site on the outer membrane in contact or fused with the inner membrane (a so-called OM-IM site). This porin bound to the OM-IM site was integrated into the outer membrane when the membrane fraction was incubated at 30 degrees C for 60 min. These observations suggest that porin bound to the outside of the outer mitochondrial membrane is integrated into the outer membrane at the OM-IM site by some temperature-dependent process(es).  相似文献   

20.
VDAC changes its structure either voltage dependent in artificial membranes or physiologically by interaction with the c conformation of the adenine nucleotide translocator (ANT). This interaction creates contact sites and leads to a specific organisation of cytochrome c in the VDAC ANT complexes. The VDAC structure specific for contact sites thus generates a signal at the surface for several proteins in the cytosol to bind with high affinity such as hexokinase, glycerolkinase and Bax. If the VDAC binding site is not occupied by hexokinase, the VDAC ANT complex has two critical qualities: firstly, external Bax gets access to the cytochrome c and secondly the ANT stays in the c conformation that easily changes the structure to an unspecific uni-porter causing permeability transition. Activity of bound hexokinase protects against both, it hinders Bax binding and employs the ANT as specific anti-porter. The octamer of mitochondrial creatine kinase binds to VDAC from the inner surface of the outer membrane. This firstly hinders direct interaction between VDAC and ANT and secondly changes porin structure into low affinity for hexokinase and external Bax. Cytochrome c in the creatine kinase complex will be differently organised not accessible to Bax and the ANT is run as anti-porter by the active octamer. However, when free radicals cause dissociation of the octamer, VDAC interacts with the ANT with the same results as described above: Bax dependent cytochrome c release and risk of permeability transition pore opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号