首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The formation of the triple helix of poly(A).poly(U).poly(U) was studied by using antibodies specific to poly(A).poly(U).poly(U). the 10-11 base chain length for oligo(A) and the 20-30 base chain length for oligo(U) may be the minimum sizes required to maintain a stable triple helix. Double-stranded poly(A).poly(U) which was the core of triple-stranded poly(A).poly(U).poly(U) could bind poly(U) and produce an analogue of poly(A).poly(U).poly(U) reactive with the antibodies even if the poly(A) or poly(U) was brominated or acetylated to the extent of 35-55%. However, brominated or acetylated poly(U) did not produce a stable triple helix with double-stranded poly(A).poly(U).  相似文献   

3.
Using poly(A)-Sepharose and poly(U)-Sepharose affinity chromatography, various classes of nuclear RNA can be distinguished in Friend leukaemia cells. One of these contains a poly(A) tract (poly(A)+-RNA) and another lacks a poly(A) tract but has an affinity for poly(A)-Sepharose (poly(A)-u+-RNA). The stability of these two particular nuclear RNA classes was examined by using a 'pulse-chase' technique involving D-glucosamine treatment. Nuclear poly(A)-u+-RNA was found to decay as a single component with a half-life of about 12 min. In contrast, nuclear poly(A)+-RNA appears to consist of at least two distinct metabolic components with half-lives of about 22 min and 120 min. Furthermore, poly(A)-u+-RNA is transported from the nuclei much more rapidly than the poly(A)+-RNA. The 'pulse-chase' approach also allowed a quantitative estimate to be made of the conversion of nuclear poly(A)+-RNA and poly(A)-u+-RNA to cytoplasmic poly(A)-RNA and poly(A)-u+-RNA.  相似文献   

4.
The interferon-inducing activity of the double-stranded complex poly(A) - poly(U) in primary rabbit kidney cell cultures is reduced when the cells are treated with poly(dUfl) either 1 h before, simultaneously with, or 1 h after the exposure to the double-stranded complex. It has been demonstrated in experiments involving sensitivity to hydrolysis by RNAase, UV absorbance-mixing curves, and UV absorbance-temperature profiles that this phenomenon is due to the formation of the triple-stranded complex poly(A) - poly(U) - poly(dUfl). The latter complex seems to be the principal product of interactions in the following systems: poly(A) - poly(U) + poly(dUfl); poly(A) - poly(dUfl) + poly(U); and poly(A) + poly(U) + poly (dUfl).  相似文献   

5.
Chemically synthesized 2-azaadenosine 5'-diphosphate (n2ADP) and 2-azainosine 5'-diphosphate (n2IDP) were polymerized to yield poly(2-azaadenylic acid), poly(n2A), and poly(2-azainosinic acid), poly(n2I), using Escherichia coli polynucleotide phosphorylase. In neutral solution, poly(n2A) and poly(n2I) had hypochromicities of 32 and 5.5%, respectively. Poly(n2A) formed an ordered structure, which had a melting temperature (Rm) of 20 degrees C at 0.15 M salt concentration. Upon mixing with poly(U), poly(n2A) formed a 1 : 2 complex with Tm of 41 degrees C at 0.15 M salt concentration. Poly(n2A) and poly(n2I) formed three-stranded complexes with poly(I), and poly(A), respectively. Poly(n2A) . 2poly(I), poly(A) . 2poly(n2I), and poly(n2A) . 2poly(n2I) complexes had Tm values of 23, 48, and 31 degrees C at 0.15 M salt concentration, respectively. Poly(n2I) formed a double-stranded complex with poly(C), but its Tm was very low.  相似文献   

6.
Complete turnover of poly(A) on maternal mRNA of sea urchin embryos   总被引:2,自引:0,他引:2  
G J Dolecki  R F Duncan  T Humphreys 《Cell》1977,11(2):339-344
Measurement of the incorporation of radioactive adenosine into precursor pools and into poly(A) of fertilized sea urchin eggs showed that the amount of adenosine incoporated into poly(A) after a 2 hr incubation approximated the total poly(A) content of the embryos. This was observed whether the incubation was begun at fertilization when the poly(A) content is tripling or at 2.5 hr after fertilization when the poly(A) levels are not changing, and thus indicates that poly(A) turns over continually and completely. The turnover appears to take place on polysomal mRNA, since after either 10 or 120 min of incubation, 75% of the 3H-adenosine incorporated into poly(A) is on polysomes. Poly(A) lengths before and after fertilization are not significantly different, indicating that the increase in poly(A) content reflects the addition of poly(A) sequences onto mRNA molecules which previously contained no poly(A) sequences or only short poly(A) sequences. Both the new as well as the preexisting poly(A) tracts must turn over to produce the incorporation we observe. The radioactive poly(A) tracts measured by alkaline release of adenosine begin as short sequences and gradually extend their lengths until they have reached a size consistent with the idea that the poly(A) sequences have become fully radioactive. This labeling pattern shows that the poly(A) is turning over from the 3′ end terminal probably by a shortening and lengthening mechanism.  相似文献   

7.
Abstract

The nucleic acid triplexes poly d(T)·poly d(A)·poly d(T), poly (U)·poly (A)·poly (U), and poly (I)·poly (A)·poly (I) display a sort of continuity between each other. However, their morphologies present their own individuality which, considering those of their parent duplexes, are quite unexpected. This comparison helps to understand triplex structure-function relationship. While helical parameters are functions of the sugar pucker, low values of WC and Hoogsteen base-pair propellers is commonplace for triplexes and the Hoogsteen base-pair geometry monitors the effects of the interstrand phosphates charge-charge repulsion.

Synopsis

The nucleic acid triplexes poly d(T)·poly d(A)·poly d(T), poly(U)·poly(A)·poly(U), and poly (I)·poly (A)·poly (I) present distinct morphologies. Considering those of their parent duplexes, they are also quite unexpected.  相似文献   

8.
Y Sawai  N Kitahara  K Tsukada 《FEBS letters》1982,150(1):228-232
In vitro poly(dA) synthesis on poly(dT) template can be initiated by poly(A) primer. Poly(A) chains are covalently extended by DNA polymerase. The reaction product consists of poly(dA) chain with poly(A) at their 5'-ends, hydrogen bonded to the template poly(dT). The primer poly(A) is linked to the product poly(dA) via a 3':5'-phosphodiester bond, and can be specifically removed by ribonuclease H from chick embryos, leaving a 5'-phosphate end of poly(dA). Poly- or oligoriboadenylate longer than the (pA)5 could serve as a priming activity to synthesize poly(A) covalently linked to poly(dA).  相似文献   

9.
The purification scheme for a 5'----3' exoribonuclease of Saccharomyces cerevisiae has been modified to facilitate purification of larger amounts of enzyme and further extended to yield highly purified enzyme by use of poly(A)-agarose chromatography. As determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or physical characterization, the enzyme has a molecular weight of about 160,000. Further studies of its substrate specificity show that poly(C) and poly(U) preparations require 5' phosphorylation for activity and that poly(A) with a 5'-triphosphate end group is hydrolyzed at only 12% of the rate of poly(A) with a 5'-monophosphate end group. DNA is not hydrolyzed, but synthetic polydeoxyribonucleotides are strong competitive inhibitors of the hydrolysis of noncomplementary ribopolymers. Poly(A).poly(U) and poly(A).poly(dT) are hydrolyzed at 60 and 50%, respectively, of the rate of poly(A) at 37 degrees C. The RNase H activity of the enzyme can also be demonstrated using an RNA X M13 DNA hybrid as a substrate. When poly(dT).poly(dA) with a 5'-terminal poly(A) segment on the poly(dA) is used as a substrate, the enzyme hydrolyzes the poly(A) "tail," removing the last ribonucleotide, but does not hydrolyze the poly(dA).  相似文献   

10.
M Bartolf  C A Price 《Biochemistry》1979,18(9):1677-1680
Chloroplasts were isolated from spinach leaves and the intact chloroplasts separated by centrifugation on gradients of silica sol. Chloroplasts prepared in this way were almost completely free of cytoplasmic rRNA. The purified chloroplasts were incubated with 32PO4 in the light. The nucleic acids were then extracted and the RNA was fractionated into poly(A)-lacking RNA and poly(A)-containing RNA (poly(A)-RNA) via oligo(dT)-cellulose chromatography. The poly(A)-RNA had a mean size of approximately 18--20 S as determined by polyacrylamide gel electrophoresis. The poly(A)-RNA was digested with RNase A and RNase T1, and the resulting poly(A) segments were subjected to electrophoresis on a 10% w/v polyacrylamide gel 98% v/v formamide). Radioactivity was incorporated into both poly(A)-RNA and poly(A)-lacking RNA and into the poly(A) segments themselves. The poly(A) segments were between 10 and 45 residues long and alkaline hydrolysis of poly(A) segments followed by descending paper chromatography showed that they were composed primarily of adenine residues. There was no 32PO4 incorporation into acid-insoluble material in the dark. We conclude that isolated chloroplasts are capable of synthesizing poly(A)-RNA.  相似文献   

11.
The extent to which the poly(A)(+)RNA sequence complexity from sea-urchin embryos is also represented in poly(A)(-)RNA was determined by cDNA cross-hybridization. Eighty percent or more of both the cytoplasmic poly(A)(+)RNA and polysomal poly(A)(+)RNA sequences appeared in a poly(A)(-) form. In both cases, the cellular concentrations of the poly(A)(-)RNA molecules that reacted with the cDNA were similar to the concentrations of the homologous poly(A)(+) sequences. Additionally, few, if any, abundant poly(A)(+)mRNA molecules were quantitatively discriminated by polyadenylation, since the abundant poly(A)(+)sequences were also abundant in poly(A)(-)RNA. Neither degradation nor inefficient binding to oligo (dT)-cellulose can account for the observed cross-reactivity. These data indicate that, in sea-urchin embryos, the poly(A) does not regulate the utilization of mRNA by demarcating an mRNA subset that is specifically and completely polyadenylated.  相似文献   

12.
Using affinity columns with immobilized poly(A), poly(G), poly(U), poly(C), and poly(A).poly(U) and poly(G) x poly(C) duplexes several polyribonucleotide-binding blood plasma proteins have been captured. Albumin and keratins K1 and K2e have been detected to bind polypurine tracts. The in vitro glycated albumin binds poly(A) and poly(G) more efficiently than the unmodified protein. The major polypyrimidine-binding blood plasma protein (28 kDa) can catalyze the hydrolysis of poly(U).  相似文献   

13.
L C Rainen  B D Stollar 《Biochemistry》1977,16(9):2003-2007
Rabbit antibodies to the triple-helical polynucleotide poly(A)-poly(U)-poly(I) were fractionated into three major antibody populations, each recognizing a different conformational feature of the triple-helical immunogen. Two distinct populations were purified from precipitates made with poly(A)-poly(U)-poly(U) and poly(A)-poly(I)-poly(I). The former reacted with double-stranded poly(A)-poly(U) or poly(I)-poly(C), and similar populations could be purified with either double-stranded form. The second population recognized the poly(A)-poly(I) region of the triple helix, and the third required all three strands for reactivity. These immunochemical studies suggest that the poly(A) and poly(U) have the same orientation in the triple-helicical poly(A)-poly(U)-poly(I) as in the double-helical poly(A)-poly(U), in which they have Watson-Crick base pairing.  相似文献   

14.
A simple procedure, useful for quantitative and qualitative assays of poly(A)-containing RNA and poly(A), as well as for preparative purposes, is described. Glass-fiber filters with immobilized poly(U), a well-known technique for absorption of poly(A)-containing RNA, is combined with electrophoresis in a gel slab of agarose. In front of each of the two troughs in a gel slab, glass-fiber filters are inserted, one of which is impregnated with poly(U). Two identical RNA samples, e.g., split samples of total RNA from salivary glands of Chironomus tentans, are applied to the troughs and are moved electrophoretically across two different filters. The electrophoresis is conducted under conditions which promote the formation of duplexes between absorbed poly(U) and moving poly(A). While the passage of RNA chains across the control filter may take place essentially freely, RNA molecules that contain poly(A) hybridize with poly(U) fixed in the glass-fiber filter and become trapped there. The difference between resulting gel profiles [pattern of the total RNA minus the pattern of RNA not containing poly(A)] yields the electrophoretic distribution of poly(A)-containing RNA. In addition, poly(A)-containing RNA can be eluted from the poly(U) filter with formamide and subjected to electrophoresis without a subsequent precipitation in ethanol. No measurable quantities of ribosomal RNA or tRNA are retained on the poly(U) glass-fiber filters. The hybridization technique enables a quantitative retention of poly(A) molecules representing a wide range of chain lengths.  相似文献   

15.
The interaction of coralyne with poly(A)•poly(U), poly(A)•2poly(U), poly(A) and poly(A)•poly(A) is analysed using spectrophotometric, spectrofluorometric, circular dichroism (CD), viscometric, stopped-flow and temperature-jump techniques. It is shown for the first time that coralyne induces disproportionation of poly(A)•poly(U) to triplex poly(A)•2poly(U) and single-stranded poly(A) under suitable values of the [dye]/[polymer] ratio (CD/CP). Kinetic, CD and spectrofluorometric experiments reveal that this process requires that coralyne (D) binds to duplex. The resulting complex (AUD) reacts with free duplex giving triplex (UAUD) and free poly(A); moreover, ligand exchange between duplex and triplex occurs. A reaction mechanism is proposed and the reaction parameters are evaluated. For CD/CP> 0.8 poly(A)•poly(U) does not disproportionate at 25°C and dye intercalation into AU to give AUD is the only observed process. Melting experiments as well show that coralyne induces the duplex disproportionation. Effects of temperature, ionic strength and ethanol content are investigated. One concludes that triplex formation requires coralyne be only partially intercalated into AUD. Under suitable concentration conditions, this feature favours the interaction of free AU with AUD to give the AUDAU intermediate which evolves into triplex UAUD and single-stranded poly(A). Duplex poly(A)•poly(A) undergoes aggregation as well, but only at much higher polymer concentrations compared to poly(A)•poly(U).  相似文献   

16.
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.  相似文献   

17.
The complexity of nuclear RNA, poly(A)hnRNA, poly(A)mRNA, and total poly(A)RNA from mouse brain has been measured by saturation hybridization with nonrepeated DNA. These DNA populations were complementary, respectively, to 21, 13.5, 3.8, and 13.3% of the DNA. From the RNA Cot required to achieve half-sturation, it was estimated that about 2.5–3% of the mass of total nuclear RNA constituted most of the complexity. Similarly, complexity driver molecules constituted 6–7% of the mass of the poly(A)hnRNA. 75–80% of the poly(A)mRNA diversity is contained in an estimated 4–5% of the mass of this mRNA. Poly(A)hnRNA constituted about 20% of the mass of nuclear RNA and was comprised of molecules which sedimented in DMSO-sucrose gradients largely between 16S and 60S. The number average size of poly(A)hnRNA determined by sedimentation, electron microscopy, or poly(A) content was 4200–4800 nucleotides. Poly(A)mRNA constituted about 2% of the total polysomal RNA, and the number average size was 1100–1400 nucleotides. The complexity of whole cell poly(A)RNA, which contains both poly(A)hnRNA and poly(A)mRNA populations, was the same as poly(A)hnRNA. This implies that cytoplasmic polyadenylation does not occur to any apparent qualitative extent and that poly(A)mRNA is a subset of the poly(A)hnRNA population. The complexity of poly(A)hnRNA and poly(A)mRNA in kilobases was 5 × 105 and 1.4 × 105, respectively. DNA which hybridized with poly(A)mRNA renatures in the presence of excess total DNA at the same rate as nonrepetitive tracer DNA. Hence saturation values are due to hybridization with nonrepeated DNA and are therefore a direct measure of the sequence complexity of poly(A)mRNA. These results indicate that the nonrepeated sequence complexity of the poly(A)mRNA population is equal to about one fourth that observed for poly(A)hnRNA.  相似文献   

18.
Total poly(A(+))-RNA (poly(A(+))-RNA(tot)) was isolated from rat seminal vesicle and its size distribution determined by 70% formamide 5-25% sucrose density analysis. One major peak was resolved in the 10-13 S region and accounted for approximately 35% of the total poly(A(+))-RNA applied. Preparative 1% SDS, 5-20% linear sucrose density gradients also resolved a single major peak in the 11S region (poly(A(+))(11S). Analysis of poly(A(+))-RNA(tot) and poly(A(+))-RNA(11S) under denaturing conditions on 2% agarose gel electrophoresis demonstrated two major components in both poly(A(+))-RNA populations. Size estimations for these components are 620 and 540 NT respectively. (3)H-cDNA was made to both poly(A(+))-RNA(tot) and poly(A(+))-RNA(11S). Back-hybridization of poly(A(+))-RNA(tot) and poly(A(+))-RNA(11S) to their respective (3)H-cDNA revealed a highly abundant class representing 41% and 85% of the sequences in their respective (3)H-cDNA's. The highly abundant class corresponded to 3-5 sequences present in 30,000-50,000 copies/cell. Invitro translation of poly(A(+))-RNA(11S) resulted in two major polypeptides coded for by the 620 NT long and 540 NT long poly(A(+))-RNA respectively.Images  相似文献   

19.
Poly(A) polymerase has been purified to near homogeneity from the cytoplasm of Artemia salina as described previously (Roggen, E and Slegers, H. (1985) Eur. J. Biochem. 147, 225–232). Affinity chromatography on poly(A)-Sepharose 4B separates the enzyme preparation into two fractions. In standard assay conditions poly(A) polymerase fraction I (poly(A)-Sepharose 4B unbound) and fraction II (poly(A)-Sepharose 4B bound) have specific activities of 2.4 and 8.0 μmol AMP/h per mg enzyme, respectively. Poly(A) polymerase fraction II shows a high primer specificity towards the 17 S poly(A)-containing mRNP. Depending on the reaction conditions used, poly(A) sequences of 140 ± 15 AMP residues/μg enzyme are synthesized on the latter primer. In contrast, poly(A) polymerase fraction I only elongates oligo(A) primers efficiently. An endogenous RNA is detected in poly(A) polymerase II preparations. This RNA has a length of 83 ± 2 nucleotides and is a component of a 60 kDa particle. After removal of the latter the specificity of poly(A) polymerase fraction II for the 17 S poly(A)-containing mRNP is abolished and the characteristics of the enzyme resemble those of poly(A) polymerase I.  相似文献   

20.
The polymerization of 2-fluoroadenosine 5'-diphosphate by polynucleotide phosphorylase to give high molecular weight poly(2-fluoroadenylic acid), poly(fl2A), is described. Both the single-stranded and double-stranded (acid) forms of poly(fl2A) exhibit strikingly similar ultraviolet and circular dichroism spectra to those of poly(A), and the enzymatic polymerization rates and thermal hyperchromicities of the two polymers are also very similar. However, the pKa of poly(fl2A) for protonation at N-1 is 2.9 compared to 5.9 for poly(A) under similar conditions. Poly(fl2A) forms a triple-stranded helix with poly(U) which has ultraviolet and cd spectra very reminiscent of poly(A) . 2 poly(U), but no conditions could be found which permitted the formation of a double helix. In the Escherichia coli ribosome system poly(fl2A) codes for the synthesis of polylysine, as does poly(A), although the rate and extent of incorporation were less in the former case. The role of basicity of adenine N-1 in these interactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号