首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hybrid proteins consisting of the mature form of cytochrome P450scc (mP) and adrenodoxin (Ad), attached to either the NH2- or COOH-terminus (Ad-mP and mP-Ad, respectively), were expressed in E. coli. Spectral and catalytic properties of P450scc were studied using the membrane fraction of E. coli cells. It has been shown that the Ad amino acid sequence attached to the termini of the P450scc-domain neither affects the insertion of a hybrid protein into the cytoplasmic membrane nor influences its heme binding ability. The results suggest that Ad attached to the NH2-terminus does not markedly affect the folding of the P450scc-domain, but cholesterol hydroxylase/lyase activity of the Ad-mP hybrid was found to be much lower than that of the native P450scc enzyme. The modification of the COOH-terminus does not alter the specific P450scc activity, but results in a dramatic increase in the amount of hybrid protein with incorrectly folded P450scc domain.  相似文献   

3.
We have constructed plasmids for yeast expression of the fusion protein pre-cytochrome P450scc–adrenodoxin reductase–adrenodoxin (F2) and a variant of F2 with the yeast CoxIV targeting presequence. Mitochondria isolated from transformed yeast cells contained the F2 fusion protein at about 0.5% of total protein and showed cholesterol hydroxylase activity with 22(R)-hydroxycholesterol. The activity increased 17- or 25-fold when sonicated mitochondria were supplemented with an excess of purified P450scc or a mixture of adrenodoxin (Adx) and adrenodoxin reductase (AdxRed), respectively. These data suggest that, at least in yeast mitochondria, the interactions of the catalytic domains of P450scc, Adx, and AdxRed in the common polypeptide chain are restricted.  相似文献   

4.
NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin -P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin-P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system.  相似文献   

5.
6.
7.
The conversion of cholesterol to pregnenolone by cytochrome P450scc is the rate-determining step in placental progesterone synthesis. The limiting component for placental cytochrome P450scc activity is the concentration of adrenodoxin reductase in the mitochondria, where it permits cytochrome P450scc to work at only 16% of maximum velocity. Adrenodoxin reductase serves to reduce adrenodoxin as part of the electron transfer from NADPH to cytochrome P450scc. We therefore measured the proportion of adrenodoxin in the reduced form in intact mitochondria from the human placenta during active pregnenolone synthesis, using EPR. We found that the adrenodoxin pool was only 30% reduced, indicating that the adrenodoxin reductase concentration was insufficient to maintain the adrenodoxin in the fully reduced state. As both oxidized and reduced adrenodoxin can bind to cytochrome P450scc we tested the ability of oxidized adrenodoxin to act as a competitive inhibitor of pregnenolone synthesis. This was done in a fully reconstituted system comprising 0.3% Tween 20 and purified proteins, and in a partially reconstituted system comprising submitochondrial particles, purified adrenodoxin and adrenodoxin reductase. We found that oxidized adrenodoxin is an effective competitive inhibitor of placental cytochrome P450scc with a Ki value half that of the Km for reduced adrenodoxin. We conclude that the limiting concentration of adrenodoxin reductase present in placental mitochondria has a two-fold effect on cytochrome P450scc activity. It limits the amount of reduced adrenodoxin that is available to donate electrons to cytochrome P450scc and the oxidized adrenodoxin that remains, competitively inhibits the cytochrome.  相似文献   

8.
The mitochondrial side-chain cleavage of cholesterol, catalysed by cytochrome P450scc, is rate-limiting in the synthesis of progesterone by the human placenta. Cytochrome P450scc activity is in turn limited by the concentration of adrenodoxin reductase (AR) in placental mitochondria. In order to better understand which components of the cholesterol side-chain cleavage system are important in the regulation of placental progesterone synthesis, we have examined their effects on P450scc activity with both saturating and limiting concentrations of AR. The present study reveals that decreasing the AR concentration causes a decrease in the K(m) of cytochrome P450scc for cholesterol, facilitating saturation of the enzyme with its substrate. Decreasing AR resulted in P450scc activity becoming less sensitive to changes in P450scc concentration. The adrenodoxin (Adx) concentration in mitochondria from term placentae is near-saturating for P450scc and under these conditions, we found that decreasing AR reduces the K(m) of P450scc for adrenodoxin. Increasing either the cholesterol or P450scc concentration increased the amount of AR required for P450scc to work at half its maximum velocity. A relatively small increase in AR can support considerably higher rates of side-chain cleavage activity when there is a coordinate increase in AR and P450scc concentrations. We conclude from this study that cholesterol is near-saturating for cytochrome P450scc activity in placental mitochondria due to the P450scc displaying a low K(m) for cholesterol resulting from the low and rate-limiting concentration of AR present. This study reveals that it is unlikely that cholesterol or adrenodoxin concentrations are important regulators of placental progesterone synthesis but AR or coordinate changes in AR and P450scc concentrations are likely to be important in its regulation.  相似文献   

9.
Cytochrome P450scc and adrenodoxin are redox proteins of the electron transfer chain of the inner mitochondrial membrane steroid hydroxylases. In the present work site-directed mutagenesis of the charged residues of cytochrome P450scc and adrenodoxin, which might be involved in interaction, was used to study the nature of electrostatic contacts between the hemeprotein and the ferredoxin. The target residues for mutagenesis were selected based on the theoretical model of cytochrome P450scc-adrenodoxin complex and previously reported chemical modification studies of cytochrome P450scc. In the present work, to clarify the molecular mechanism of hemeprotein interaction with ferredoxin, we constructed cytochrome P450scc Lys267, Lys270, and Arg411 mutants and Glu47 mutant of adrenodoxin and analyzed their possible role in electrostatic interaction and the role of these residues in the functional activity of the proteins. Charge neutralization at positions Lys267 or Lys270 of cytochrome P450scc causes no significant effect on the physicochemical and functional properties of cytochrome P450scc. However, cytochrome P450scc mutant Arg411Gln was found to exhibit decreased binding affinity to adrenodoxin and lower activity in the cholesterol side chain cleavage reaction. Studies of the functional properties of Glu47Gln and Glu47Arg adrenodoxin mutants indicate that a negatively charged residue in the loop covering the Fe2S2 cluster, being important for maintenance of the correct architecture of these structural elements of ferredoxin, is not directly involved in electrostatic interaction with cytochrome P450scc. Moreover, our results indicate the presence of at least two different binding (contact) sites on the proximal surface of cytochrome P450scc with different electrostatic input to interaction with adrenodoxin. In the binary complex, the positively charged sites of the proximal surface of cytochrome P450scc well correspond to the two negatively charged sites of adrenodoxin: the "interaction" domain site and the "core" domain site.  相似文献   

10.
The conditions for heterologous expression of recombinant bovine adrenodoxin in E. coli have been optimized, thus reaching expression levels up to 12-14 micromoles per liter of culture medium. A highly efficient method for purification of this recombinant ferredoxin from the E. coli cells has been developed. The structural-functional properties of the highly purified recombinant protein have been characterized and compared to those of natural adrenodoxin purified from bovine adrenocortical mitochondria. In contrast to natural adrenodoxin, which is characterized by microheterogeneity, the recombinant adrenodoxin is homogeneous as judged by N- and C-terminal amino acid sequencing, and its sequence corresponds to the full-length mature form of adrenodoxin containing 128 amino acid residues. The interactions of the natural and recombinant adrenodoxins with cytochrome P450scc have been studied and compared with respect to: the efficiency of their enzymatic reduction of cytochrome P450scc in a reconstituted system; the ability of the immobilized adrenodoxins to bind cytochrome P450scc; the ability of the adrenodoxins to induce a spectral shift of cytochrome P450scc and to effect the average polarity of exposed tyrosines in the low-spin cytochrome P450scc. The recombinant adrenodoxin is functionally active and in the reduced state as well as at low ionic strength it displays higher affinity to cytochrome P450scc as compared to the natural bovine adrenocortical adrenodoxin. The possible role of the C-terminal sequence of the adrenodoxin molecule in its interaction with cytochrome P450scc as well as the advantages of using the recombinant protein instead of the natural one are discussed.  相似文献   

11.
Binary and ternary complexes of bovine adrenocortical mitochondrial cytochrome P-450scc with adrenodoxin and adrenodoxin reductase.adrenodoxin complex are formed in the presence of cholesterol and Emulgen 913. Both cholesterol and Emulgen 913 are required for the binding of cytochrome P-450scc with adrenodoxin. Since phospholipids are able to replace Emulgen 913 in this reaction, in vivo phospholipids of the mitochondrial inner membrane appear to play the function of the detergent. The dissociation constants of the cytochrome.adrenodoxin complex are 0.3 to 0.4 microM at 130 microM dimyristoylphosphatidylcholine and 0.9 microM at 120 microM Emulgen 913, whereas the dissociation constant for the ternary complex of cytochrome P-450scc with adrenodoxin reductase and adrenodoxin is 4.0 microM at 150 microM Emulgen 913. The stoichiometry of binary and ternary complexes reveals the 1:1 and 1:1:1 molar ratios, respectively, judging from chemical analyses after the fractionation of the complexes by gel filtration. Emulgen 913, Tween 20, ethylene glycol, myristoyllysophosphatidylcholine, dimyristoylphosphatidylcholine, and phosphatidylethanolamine show the enhanced activity of cholesterol side chain cleavage reaction with cytochrome P-450scc, adrenodoxin, adrenodoxin reductase, and NADPH. These results, in conjunction with earlier experiments, lead us to the proposal on the structure of the hydroxylase complex in the membrane and to the hypothesis on the regulation of the enzymatic activity by the availability of substrate cholesterol to the cytochrome. Hence, we propose a mobile P-450scc hypothesis for the response of the mitochondrion to adrenocorticotropic hormone stimuli.  相似文献   

12.
Expression and regulation of adrenodoxin and P450scc mRNA in rodent tissues   总被引:1,自引:0,他引:1  
The rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone. This reaction occurs in steroidogenic tissue in the inner mitochondrial membrane, and is mediated by the cholesterol side-chain cleavage enzyme. This enzyme system transfers electrons from NADPH to cholesterol through its three protein components: adrenodoxin reductase, adrenodoxin, and the terminal oxidase, P450scc. We have previously shown that P450scc mRNA is regulated by tropic hormones and cAMP by a cycloheximide-independent mechanism in mouse Leydig tumor MA-10 cells. We now show that the mRNA for adrenodoxin, another component of the cholesterol side-chain cleavage enzyme system, is regulated by tropic hormones and cAMP in MA-10 cells. We cloned rat adrenodoxin cDNA to analyze adrenodoxin mRNA in various rat tissues and in MA-10 cells by RNase protection assays. Adrenodoxin mRNA is found in virtually all rat tissues examined, although it is most abundant in adrenals, ovaries, and testes. MA-10 cells synthesize two species of adrenodoxin mRNA, one of 1.2 kb and the other of 0.8 kb. Both of these adrenodoxin mRNAs are increased approximately six-fold by 1 mM 8-Br-cAMP, five-fold by 10 microM forskolin, and three-fold by both 25 ng/ml hCG and by 100 ng/ml LH. Maximal adrenodoxin mRNA accumulation occurs by 4 h of hormonal stimulation. The cAMP-mediated increase in adrenodoxin mRNA accumulation is independent of protein synthesis, since treatment with cycloheximide or puromycin in the absence or presence of cAMP does not inhibit, and even increases, adrenodoxin mRNA accumulation.  相似文献   

13.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

14.
A cleavable cross-linking reagent, dimethyl-3,3'-dithiobispropionimidate, was used to study the molecular organization of adrenocortical cytochrome P-450scc. Extensive cross-linking was found to occur, resulting in the formation of heterologous oligomers up to octamer. The covalently cross-linked complex of adrenocortical cytochrome P-450scc with adrenodoxin has been obtained by using dimethyl-3,3'-dithiobispropionimidate. In the presence of NADPH and adrenodoxin reductase, electron transfer to cytochrome P-450scc occurs in the complex, and, in the presence of cholesterol, the latter effectively oxidizes to pregnenolone. By using covalently immobilized adrenodoxin and heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, the adrenodoxin-binding site was shown to be located in the heme-containing, catalytic domain of cytochrome P-450scc. The data obtained indicate the existence of two different sites on the adrenodoxin molecule that are responsible for the interaction with adrenodoxin reductase and cytochrome P-450scc. This is consistent with the model mechanism of electron transfer in the organized complex.  相似文献   

15.
The formation of individual complexes between the components of cholesterol side chain cleavage system-cytochrome P450scc, adrenodoxin (Ad) and adrenodoxin reductase (AdR) was kinetically characterized and their association and dissociation rate constants were measured by optical biosensor. The dominant role of interprotein electrostatic interactions in productive complex formation was demonstrated. Despite of the fact that P450scc and AdR complete for the binding with the same or closely placed negatively charged groups on the surface of immobilized Ad, the formation of the AdR/P450scc/Ad ternary complex upon AdR immobilization on dextran was registered. It is shown, that Ad does not bind to AdR immobilized via amino groups AdRim but it is possible only after the preliminary binding of P450scc to AdRim. The life time of such ternary complex, about 15 s, is sufficient for the realization of 5-8 catalytic cycles.  相似文献   

16.
Following up on our previous findings that the skin possesses steroidogenic activity from progesterone, we now show widespread cutaneous expression of the full cytochrome P450 side-chain cleavage (P450scc) system required for the intracellular catalytic production of pregnenolone, i.e. the genes and proteins for P450scc enzyme, adrenodoxin, adrenodoxin reductase and MLN64. Functionality of the system was confirmed in mitochondria from skin cells. Moreover, purified mammalian P450scc enzyme and, most importantly, mitochondria isolated from placenta and adrenals produced robust transformation of 7-dehydrocholesterol (7-DHC; precursor to cholesterol and vitamin D3) to 7-dehydropregnenolone (7-DHP). Product identity was confirmed by comparison with the chemically synthesized standard and chromatographic, MS and NMR analyses. Reaction kinetics for the conversion of 7-DHC into 7-DHP were similar to those for cholesterol conversion into pregnenolone. Thus, 7-DHC can form 7-DHP through P450scc side-chain cleavage, which may serve as a substrate for further conversions into hydroxy derivatives through existing steroidogenic enzymes. In the skin, 5,7-steroidal dienes (7-DHP and its hydroxy derivatives), whether synthesized locally or delivered by the circulation, may undergo UVB-induced intramolecular rearrangements to vitamin D3-like derivatives. This novel pathway has the potential to generate a variety of molecules depending on local steroidogenic activity and access to UVB.  相似文献   

17.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

18.
We have previously reported that cytochrome P450scc activity in the human placenta is limited by the supply of electrons to the P450scc [Tuckey, R. C., Woods, S. T. & Tajbakhsh, M. (1997) Eur. J. Biochem. 244, 835-839]. The aim of the present study was to determine whether it is adrenodoxin reductase, adrenodoxin or both which limits cytochrome P450scc activity and hence progesterone synthesis in the placenta. We found that the concentrations of adrenodoxin reductase and adrenodoxin in placental mitochondria were both considerably lower than the concentrations of these proteins in the bovine adrenal cortex. When P450scc activity assays were carried out at high mitochondrial protein concentrations, we found that the addition of exogenous adrenodoxin reductase to sonicated mitochondria rescued pregnenolone synthesis to a level above that for intact mitochondria, showing that adrenodoxin is near-saturating in vivo. In contrast, pregnenolone synthesis by sonicated mitochondria was almost zero even after the addition of human adrenodoxin. This shows that the concentration of endogenous adrenodoxin reductase was insufficient to support appreciable rates of pregnenolone synthesis, even when concentrated mitochondrial samples were used. Comparative studies with human and bovine adrenodoxin reductase have revealed that a twofold higher concentration of human adrenodoxin reductase is required for maximal P450scc activity in the presence of saturating human adrenodoxin. Thus, not only is the adrenodoxin concentration low in placental mitochondria, but the amount required for maximal P450scc activity is higher than that for the bovine reductase. Overall, the data indicate that the adrenodoxin reductase concentration limits the activity of P450scc in placental mitochondria and hence determines the rate of progesterone synthesis.  相似文献   

19.
We studied the properties of various fused combinations of the components of the mitochondrial cholesterol side-chain cleavage system including cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). When recombinant DNAs encoding these constructs were expressed in Escherichia coli, both cholesterol side-chain cleavage activity and sensitivity to intracellular proteolysis of the three-component fusions depended on the species of origin and the arrangement of the constituents. To understand the assembly of the catalytic domains in the fused molecules, we analyzed the catalytic properties of three two-component fusions: P450scc-Adx, Adx-P450scc, and AdR-Adx. We examined the ability of each fusion to carry out the side-chain cleavage reaction in the presence of the corresponding missing component of the whole system and examined the dependence of this reaction on the presence of exogenously added individual components of the double fusions. This analysis indicated that the active centers in the double fusions are either unable to interact or are misfolded; in some cases they were inaccessible to exogenous partners. Our data suggest that when fusion proteins containing P450scc, Adx, and AdR undergo protein folding, the corresponding catalytic domains are not formed independently of each other. Thus, the correct folding and catalytic activity of each domain is determined interactively and not independently.  相似文献   

20.
Rat Leydig cells in primary culture were used as a model system to investigate the effects of human chorionic gonadotropin (hCG) and dibutyryl cyclic AMP (Bt2cAMP) on the synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and the iron-sulfur protein, adrenodoxin. Leydig cells isolated from the testes of mature rats were placed in monolayer culture in the absence of stimulatory factors for 8 days. HCG (10 mIU/ml) or Bt2cAMP (1 mM) were then added to some of the cultures and the incubations were continued for up to 48 h. Testosterone production was increased markedly in cells incubated with hCG or Bt2cAMP. A significant accumulation of pregnenolone in the medium of cells treated with Bt2cAMP was also observed. Both hCG and Bt2cAMP increased the rates of synthesis of cytochrome P-450scc and adrenodoxin. In hCG-treated cells the apparent rate of synthesis of cytochrome P-450scc was increased 13-fold over that of controls after 48 h of incubation; the rate of adrenodoxin synthesis was increased 4-fold by hCG treatment. In Bt2cAMP-treated cells the rate of synthesis of cytochrome P-450scc was 37-fold greater than that of control cells after 48 h of incubation; adrenodoxin synthesis was increased 36-fold over controls. In hCG- and Bt2cAMP-treated cells, the concentration of immunoreactive cytochrome P-450scc and adrenodoxin increased with increasing time of incubation, and were correlated with the stimulatory effects of these agents on cytochrome P-450scc activity and on total steroid production. The results of this study are indicative that the maintenance by LH/hCG of elevated levels of testosterone synthesis by the Leydig cell is mediated, in part, by induction of the synthesis of cytochrome P-450scc and its associated protein, adrenodoxin. Since Bt2cAMP had effects similar to those observed with hCG, it is suggested that the stimulatory effects of hCG on the synthesis of cytochrome P-450scc and adrenodoxin are mediated by increased cyclic AMP formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号