首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cold tolerance in plants is an ecologically important trait that has been under intensive study for basic and applied reasons. Determining the fitness benefits and costs of cold tolerance has previously been difficult because cold tolerance is normally an induced trait that is not expressed in warm environments. The recent creation of transgenic plants constitutively expressing cold tolerance genes enables the investigation of the fitness consequences of cold tolerance in multiple temperature environments. We studied three genes from the CBF (C-repeat/dehydration responsive element binding factor) cold tolerance pathway, CBF1, 2 and 3, in Arabidopsis thaliana to test for benefits and costs of constitutive cold tolerance. We used multiple insertion lines for each transgene and grew the lines in cold and control conditions. Costs of cold tolerance, as determined by fruit number, varied by individual transgene. CBF2 and 3 overexpressers showed costs of cold tolerance, and no fitness benefits, in both environments. CBF1 overexpressing plants showed no fitness cost of cold tolerance in the control environment and showed a marginal fitness benefit in the cold environment. These results suggest that constitutive expression of traits that are normally induced in response to environmental stress will not always lead to costs in the absence of that stress, and that the ecological risks of CBF transgene escape should be assessed prior to their use in commercial agriculture.  相似文献   

5.
6.
7.
8.
王楠  赵士振  吕孟华  向凤宁  李朔 《遗传》2016,38(11):992-1003
大豆(Glycine max (L.) Merill)是重要的粮食作物和经济作物,盐胁迫能造成大豆产量的大幅度降低。本文综述了通过正向遗传学手段获得的大豆耐盐数量性状位点(Quantitative trait locus, QTL)以及通过反向遗传学方法获得的大豆耐盐功能基因方面的研究进展。目前,正向遗传学发掘基因主要有图位克隆(Map-based cloning)和全基因组关联分析(Genome-wide association study, GWAS)两种方案,其中通过图位克隆在大豆中已经获得了6个耐盐QTL位点并且定位了1个重要的耐盐基因;利用GWAS在大豆中获得了1个耐盐功能基因。利用反向遗传学在大豆中获得了大量的耐盐相关功能基因并在模式植物中验证了其功能,主要包括离子转运蛋白基因和转录因子基因。这些研究为揭示大豆耐盐分子机制以及通过分子标记辅助育种或转基因技术创制耐盐大豆奠定了基础。  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号