共查询到20条相似文献,搜索用时 40 毫秒
1.
Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite 总被引:23,自引:0,他引:23
Transmission of malaria parasites to mosquitoes is initiated by the obligatory sexual reproduction of the parasite within the mosquito bloodmeal. Differentiation of specialized transmission stages, the gametocytes, into male and female gametes is induced by a small mosquito molecule, xanthurenic acid (XA). Using a Plasmodium berghei strain expressing a bioluminescent calcium sensor, we show that XA triggers a rapid rise in cytosolic calcium specifically in gametocytes that is essential for their differentiation into gametes. A member of a family of plant-like calcium dependent protein kinases, CDPK4, is identified as the molecular switch that translates the XA-induced calcium signal into a cellular response by regulating cell cycle progression in the male gametocyte. CDPK4 is shown to be essential for the sexual reproduction and mosquito transmission of P. berghei. This study reveals an unexpected function for a plant-like signaling pathway in cell cycle regulation and life cycle progression of a malaria parasite. 相似文献
2.
Garcia CR 《Parasitology today (Personal ed.)》1999,15(12):488-491
The nature of the mechanisms underlying Ca2+ homeostasis in malaria parasites has puzzled investigators for almost two decades. This review summarizes the current knowledge about Ca2+ homeostasis in Plasmodium spp and highlights some key aspects of this process that are specific to this parasite. Plasmodium spp are exposed, during their intracellular stage, not to the usual millimolar concentrations of Ca2+ found in body fluids, but rather to the very low Ca2+ environment of the host cell cytoplasm. Two crucial questions then arise: (1) how is Ca2+ homeostasis achieved by these protozoa; and (2) do they use Ca2+-based signaling pathways? By critically reviewing the recent literature in the field, Célia Garcia here provides at least some partial answers to these questions. 相似文献
3.
Malaria parasites, Plasmodia, spend most of their asexual life cycle within red blood cells, where they proliferate and mature. The erythrocyte cytoplasm has very low [Ca2+] (<100 nM), which is very different from the extracellular environment encountered by most eukaryotic cells. The absence of extracellular Ca2+ is usually incompatible with normal cell functions and survival. In the present work, we have tested the possibility that Plasmodia overcome the limitation posed by the erythrocyte intracellular environment through the maintenance of a high [Ca2+] within the parasitophorous vacuole (PV), the compartment formed during invasion and within which the parasites grow and divide. Thus, Plasmodia were allowed to invade erythrocytes in the presence of Ca2+ indicator dyes. This allowed selective loading of the Ca2+ probes within the PV. The [Ca2+] within this compartment was found to be approximately 40 microM, i.e., high enough to be compatible with a normal loading of the Plasmodia intracellular Ca2+ stores, a prerequisite for the use of a Ca2+-based signaling mechanism. We also show that reduction of extracellular [Ca2+] results in a slow depletion of the [Ca2+] within the PV. A transient drop of [Ca2+] in the PV for a period as short as 2 h affects the maturation process of the parasites within the erythrocytes, with a major reduction 48 h later in the percentage of schizonts, the form that re-invades the red blood cells. 相似文献
4.
Calcium fluxes and calcium buffering in human neutrophils 总被引:11,自引:0,他引:11
V von Tscharner D A Deranleau M Baggiolini 《The Journal of biological chemistry》1986,261(22):10163-10168
Neutrophils loaded with the calcium indicator quin-2 and challenged with the ionophore ionomycin or the chemotactic peptide fMet-Leu-Phe were examined in the light of a theory that relates time-dependent changes in the fluorescence of the indicator to cytosolic calcium fluxes and levels. The cytosolic binding capacity was estimated from the theory to be 1.5 +/- 0.6 X 10(8) sites/cell (0.76 mM based on a cell volume of 330 micron 3, irrespective of water content and the distribution of sites), each site having an apparent average single class dissociation constant of 0.55 +/- 0.2 microM. Some 20% of the total available cytosolic calcium sites of the normal resting cell appear to be occupied when no quin-2 is present. In a calcium-free medium, the amount of calcium released by fMet-Leu-Phe from storage pool locations that are distinct from the cytosolic sites is sufficient to further raise the cytosolic site occupancy level to 50%, at which point the calcium buffering capacity of the cytosol is maximal. In a calcium-containing medium, however, simultaneous influx from the outside appears to supply enough additional calcium to saturate most of the remaining sites. The combined initial rate of storage pool calcium release plus influx through the plasma membrane was roughly twice the initial rate at which calcium was released from storage locations alone, suggesting that stimulus-induced influx from the outside may be comparable in importance to storage pool mobilization in determining physiological calcium levels in stimulated cells. 相似文献
5.
Invasion of hepatocytes by Plasmodium sporozoites requires cGMP‐dependent protein kinase and calcium dependent protein kinase 4 下载免费PDF全文
K. Govindasamy S. Jebiwott D. K. Jaijyan A. Davidow K. K. Ojo W. C. Van Voorhis M. Brochet O. Billker P. Bhanot 《Molecular microbiology》2016,102(2):349-363
Invasion of hepatocytes by sporozoites is essential for Plasmodium to initiate infection of the mammalian host. The parasite's subsequent intracellular differentiation in the liver is the first developmental step of its mammalian cycle. Despite their biological significance, surprisingly little is known of the signalling pathways required for sporozoite invasion. We report that sporozoite invasion of hepatocytes requires signalling through two second‐messengers – cGMP mediated by the parasite's cGMP‐dependent protein kinase (PKG), and Ca2+, mediated by the parasite's calcium‐dependent protein kinase 4 (CDPK4). Sporozoites expressing a mutated form of Plasmodium berghei PKG or carrying a deletion of the CDPK4 gene are defective in invasion of hepatocytes. Using specific and potent inhibitors of Plasmodium PKG and CDPK4, we demonstrate that PKG and CDPK4 are required for sporozoite motility, and that PKG regulates the secretion of TRAP, an adhesin that is essential for motility. Chemical inhibition of PKG decreases parasite egress from hepatocytes by inhibiting either the formation or release of merosomes. In contrast, genetic inhibition of CDPK4 does not significantly decrease the number of merosomes. By revealing the requirement for PKG and CDPK4 in Plasmodium sporozoite invasion, our work enables a better understanding of kinase pathways that act in different Plasmodium stages. 相似文献
6.
D J Krogstad S P Sutera J S Marvel I Y Gluzman C W Boylan J R Colca J R Williamson P H Schlesinger 《Blood cells》1991,17(1):229-41; discussion 242-8
In the studies reported here, we examined the role of calcium in the maturation of the human malaria parasite Plasmodium falciparum, and in the loss of red cell deformability associated with parasite maturation. P. falciparum alters the permeability of its host red cell, which normally maintains submicromolar cytoplasmic concentrations of calcium. Infection of the red cell and parasite maturation produce a 30-fold increase in calcium uptake. Both parasite maturation and the loss of red cell deformability are blocked by EGTA (by extracellular-free calcium concentrations less than or equal to 35 microM) and by other calcium antagonists. The loss of red cell deformability that occurs with parasite maturation is accompanied by alterations in the cytoskeletal proteins of parasitized red cells similar to those produced by the calcium ionophore A23187 (reductions in bands 2.1 [ankyrin], 4.1, and 5 [actin]). These results establish that parasite development and the loss of red cell deformability are calcium-dependent. They suggest that parasite-induced changes in the calcium permeability of the red cell activate endogenous transglutaminase activity by raising the free calcium concentration of the red cell cytoplasm. 相似文献
7.
Judith C. Juskevich Donald M. Kuhn Walter Lovenberg 《Biochemical and biophysical research communications》1982,108(1):24-30
Calcium-calmodulin dependent protein kinase from synaptosomal cytosol rapidly loses activity upon storage at 4°C. In the presence of calcium, the loss of activity is greatly enhanced with only trace levels remaining after two hours. Calcium-calmodulin dependent protein kinase, purified by affinity chromatography on calmodulin-Sepharose, is also quite labile and the loss of enzyme activity in the partially purified preparation is similarly accelerated in the presence of calcium. Removal of calcium improves stability somewhat, whereas calmodulin itself apparently has no protective effect on the enzyme. 相似文献
8.
Rangarajan R Bei AK Jethwaney D Maldonado P Dorin D Sultan AA Doerig C 《EMBO reports》2005,6(5):464-469
Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge. Here, we show that a Plasmodium berghei homologue of Plasmodium falciparum mitogen-activated kinase-2 (Pfmap-2), a gametocyte-specific mitogen-activated protein kinase (MAPK), is required for male gamete formation. Parasites lacking Pbmap-2 are competent for gametocytogenesis, but exflagellation of male gametocytes, the process that leads to male gamete formation, is almost entirely abolished in mutant parasites. Consistent with this result, transmission of mutant parasites to mosquitoes is grossly impaired. This finding identifies a crucial role for a MAPK pathway in malaria transmission. 相似文献
9.
10.
11.
The infection by the malaria parasite of its mammalian host is initiated by the asexual reproduction of the parasite within the host hepatocyte. Before the reproduction, the elongated sporozoites undergo a depolarizing morphogenesis to the spherical exo-erythrocytic form (EEF). This change can be induced in vitro by shifting the environmental conditions, in the absence of host hepatocytes. Using rodent malaria parasites expressing a FRET-based calcium sensor, YC3.60, we observed that the intracellular calcium increased at the center of the bulbous structure during sporozoite transformation. Modulators of intracellular calcium signaling (A23187 and W-7) accelerated the sporozoite-rounding process. These data suggest that calcium signaling regulates the morphological development of the malaria parasite sporozoite to the EEF, and support a fundamental role for calcium as a universal transducer of external stimuli in the parasitic life cycle. 相似文献
12.
Jani D Nagarkatti R Beatty W Angel R Slebodnick C Andersen J Kumar S Rathore D 《PLoS pathogens》2008,4(4):e1000053
When malaria parasites infect host red blood cells (RBC) and proteolyze hemoglobin, a unique, albeit poorly understood parasite-specific mechanism, detoxifies released heme into hemozoin (Hz). Here, we report the identification and characterization of a novel Plasmodium Heme Detoxification Protein (HDP) that is extremely potent in converting heme into Hz. HDP is functionally conserved across Plasmodium genus and its gene locus could not be disrupted. Once expressed, the parasite utilizes a circuitous "Outbound-Inbound" trafficking route by initially secreting HDP into the cytosol of infected RBC. A subsequent endocytosis of host cytosol (and hemoglobin) delivers HDP to the food vacuole (FV), the site of Hz formation. As Hz formation is critical for survival, involvement of HDP in this process suggests that it could be a malaria drug target. 相似文献
13.
The activity of the calcium sensitive phospholipid dependent protein kinase C (PKC) was studied in cytosol and in the proximal tubular luminal membrane of rats during growth. Cytosolic activity was elevated at 14 and 21 days of age and fell to adult levels by day 60. Luminal brush border membrane activity on the other hand was low on day 14 but reached adult levels by day 21. Changes in brush border membrane PKC activity may have important consequences for the development of electrolyte transport in proximal tubular cells. 相似文献
14.
Rat tissue levels of Ca2+ . calmodulin-dependent protein kinase II (protein kinase II) and Ca2+ . phospholipid-dependent protein kinase (protein kinase C) were selectively assayed using the synthetic peptide syntide-2 as substrate. The sequence of syntide-2 (pro-leu-ala-arg-thr-leu-ser-val-ala-gly-leu-pro-gly-lys-lys) is homologous to phosphorylation site 2 in glycogen synthase. The relative Vmax/Km ratios of the known Ca2+-dependent protein kinases for syntide-2 were determined to be as follows: protein kinase II, 100; protein kinase C, 22; phosphorylase kinase, 2; myosin light chain kinase, 0.005. Levels of protein kinase II were highest in cerebrum (3.36 units/g tissue) and spleen (0.85 units/g) and lowest in testis (0.05 units/g) and kidney (0.04 units/g). Protein kinase II activity was localized predominantly in the 100,000g particulate fraction of cerebrum and testis, in the supernatant fraction of heart, liver, adrenal, and kidney, and about equally distributed between particulate and supernatant in spleen and lung. Likewise, protein kinase C activity was highest in cerebrum (0.56 units/g) and spleen (0.47 units/g), and the majority of activity was present in the cytosolic fraction for all tissues measured except for cerebrum and testis in which the kinase activity was equal in both fractions. Finally, the ratios of protein kinase II to protein kinase C were different in various rat tissues and between particulate and supernatant fractions. These results suggest somewhat different functions for these two Ca2+-regulated, multifunctional protein kinases. 相似文献
15.
A Sharma 《Indian journal of experimental biology》2000,38(12):1222-1226
Protein tyrosine kinases (PTKs) are believed to be implicated in the parasite growth, maturation and differentiation functions. Protein tyrosine kinase activity was found to be distributed in all the stages of P. falciparum parasite maturation. Membrane bound PTK activity was found to be increased during maturation process (ring stage to trophozoite stage) in chloroquine sensitive strains. In vivo conversion of the schizont stage to ring stage via release of merozoites was associated with a decrease in PTK activity. Chloroquine inhibited the membrane bound PTK activity in a dose dependent manner (IC50 = 45 microM). Kinetic studies show that chloroquine is a competitive inhibitor of PTK with respect to peptide substrate and noncompetitive with respect to ATP indicating that chloroquine inhibits PTK activity by binding with protein substrate binding site. The results suggest that maturation of malaria parasite is related to PTK and inhibition of this activity by chloroquine could provide a hypothesis to explain the mechanism of action of chloroquine. 相似文献
16.
M. Mayadevi D.R. Sherin V.S. Keerthi K.N. Rajasekharan R.V. Omkumar 《Bioorganic & medicinal chemistry》2012,20(20):6040-6047
Calcium/calmodulin dependent protein kinase II (CaMKII) is involved in the mechanisms underlying higher order brain functions such as learning and memory. CaMKII participates in pathological glutamate signaling also, since it is activated by calcium influx through the N-methyl-d-aspartate type glutamate receptor (NMDAR). In our attempt to identify phytomodulators of CaMKII, we observed that curcumin, a constituent of turmeric and its analogs inhibit the Ca2+-dependent and independent kinase activities of CaMKII. We further report that a heterocyclic analog of curcumin I, (3,5-bis[β-(4-hydroxy-3-methoxyphenyl)ethenyl]pyrazole), named as pyrazole-curcumin, is a more potent inhibitor of CaMKII than curcumin. Microwave assisted, rapid synthesis of curcumin I and its heterocyclic analogues is also reported. 相似文献
17.
An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite 总被引:5,自引:0,他引:5
The transmission of malaria parasites to the mosquito depends critically on the rapid initiation of sexual reproduction in response to triggers from the mosquito midgut environment. We here identify an essential function for an atypical mitogen-activated protein kinase of the rodent malaria parasite Plasmodium berghei, Pbmap-2, in male sexual differentiation and parasite transmission to the mosquito. A deletion mutant no longer expressing the Pbmap-2 protein develops as wild type throughout the asexual erythrocytic phase of the life cycle. Gametocytes, the sexual transmission stages, form normally and respond in vitro to the appropriate environmental cues by rounding up and emerging from their host cells. However, microgametocytes fail to release flagellated microgametes. Female development is not affected, as judged by the ability of macrogametes to become cross-fertilized by microgametes from a donor strain. Cellular differentiation of Pbmap-2 KO microgametocytes is blocked at a late stage of male gamete formation, after replication and mitoses have been completed and axonemes have been assembled. These data demonstrate a function for Pbmap-2 in initiating cytokinesis and axoneme motility, possibly downstream of a cell cycle checkpoint for the completion of replication and/or mitosis, which are extraordinarily rapid in the male gametocyte. 相似文献
18.
19.
Feedback inhibition of pantothenate kinase regulates pantothenol uptake by the malaria parasite 总被引:1,自引:0,他引:1
Lehane AM Marchetti RV Spry C van Schalkwyk DA Teng R Kirk K Saliba KJ 《The Journal of biological chemistry》2007,282(35):25395-25405
To survive, the human malaria parasite Plasmodium falciparum must acquire pantothenate (vitamin B5) from the external medium. Pantothenol (provitamin B5) inhibits parasite growth by competing with pantothenate for pantothenate kinase, the first enzyme in the coenzyme A biosynthesis pathway. In this study we investigated pantothenol uptake by P. falciparum and in doing so gained insights into the regulation of the parasite's coenzyme A biosynthesis pathway. Pantothenol was shown to enter P. falciparum-infected erythrocytes via two routes, the furosemide-inhibited "new permeation pathways" induced by the parasite in the infected erythrocyte membrane (the sole access route for pantothenate) and a second, furosemide-insensitive pathway. Having entered the erythrocyte, pantothenol is taken up by the intracellular parasite via a mechanism showing functional characteristics distinct from those of the parasite's pantothenate uptake mechanism. On reaching the parasite cytosol, pantothenol is phosphorylated and thereby trapped by pantothenate kinase, shown here to be under feedback inhibition control by coenzyme A. Furosemide reduced this inherent feedback inhibition by competing with coenzyme A for binding to pantothenate kinase, thereby increasing pantothenol uptake. 相似文献
20.