首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The small basic histone-like protein H-NS is known for bacteria to attenuate virulence of several animal pathogens. An hns homologue from E. amylovora was identified by complementing an E. coli hns-mutant strain with a cosmid library from E. amylovora. A 1.6 kb EcoRI-fragment complemented the mucoid phenotype and repressed the ss-glucosidase activity of E. coli PD32. The open reading frame encoding an H-NS-like protein of 134 amino acid was later shown to be located on plasmid pEA29 (McGhee and Jones 2000). A chromosomal hns gene was amplified with PCR consensus primers and localized near galU of E. amylovora. E. amylovora mutants were created by insertion of a resistance cassette, and the intact gene was inserted into a high copy number plasmid for constitutive expression. Purified chromosomal H-NS protein preferentially bound to a DNA fragment from the lsc region and bending was predicted for an adjacent fragment with the rlsB-promoter. Levan production was significantly increased by hns mutations. Synthesis of the capsular exopolysaccharide amylovoran and of levan were reduced, when hns from the E. amylovora plasmid was overexpressed. A mutation in chromosomal hns of E. amylovora increased amylovoran synthesis, and both mutations retarded symptom formation on immature pears.  相似文献   

2.
A new in vitro system is described for studying an interaction between Erwinia amylovoraand Pyrus communis (L.). The system uses single shoots placed onto the solid medium, and it enables to detect changes in pH of the medium and differential appearance of shoot necrosis. Shoots of susceptible cultivar (Williams) and tolerant cultivar (Harrow Sweet) were compared measuring the necrosis rate along the in vitroshoots and the pH variation following proton extrusion of both plant and pathogen. Shoots acidified differentially the culture medium depending on the presence of the pathogen, cultivar susceptibility and shoot inoculation methods. Differences in the tolerance level against pathogen among the cultivars were distinguishable only when the shoots were inoculated at the basal end. In susceptible cultivar, the necrosis appeared after 48 h of inoculation, while in tolerant cultivars after 72 h. This system is repeatable and more reliable than already known methods, such as in vitroleaf explants or in vivoplants; it can be used all around the year to test the gene expression and products essential to characterize the genes involved in the pathogenesis. This system showed the effects of E. amylovoraon the photosystem dependent system of host cells, confirmed by the effects of pathogen attack on the variation of chlorophyll a and chlorophyll b ratios and positive effects of light on the appearance of the first disease symptoms.  相似文献   

3.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and PODOVIRIDAE:  相似文献   

4.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and Podoviridae.  相似文献   

5.
A stable virulent donor strain (EA 178R1-99) of Erwinia amylovora can transfer, by conjugation during a 3-h mating period, the gene or genes which determine(s) plant virulence to avirulent recipient strains (EA178-M64S1 and EA178-M173S1) of Escherichia amylovora. The virulence of over 200 recombinant clones was tested; they all were as virulent on immature Bartlett pear fruits (and, in the smaller series of strains tested, also, on Pyracantha twigs) as was the parent donor strain. Although the avirulent recipeint strains are amino acid auxotrophs, addition of the required amino acids to the inocula in plant virulence trials does not of itself restore virulence. Two small series of prototrophic revertant clones were selected from the auxotrophic avirulent recipient strains; only nine of the 21 prototrophic revertant clones regained virulence, whereas the other 12 prototrophic revertant clones remained avirulent, again suggesting a lack of parallelism between nutritional status and virulence in this system. Preliminary interrupted mating trials, carried out at 15-min intervals over 3 h, show that ser is transferred during the first 15 min, that pro starts entering at about 75 min (and with a higher frequency later), and that lac (originating from an integrated Escherichia coli F'lac) enters toward the end of the 3-h mating period and at a reduced frequency compared to the other markers. The gene or genes which determine(s) plant virulence in this Escherichia amylovora donor strain appear(s) to be transferred readily and seemingly completely to recipient strains during the first 15 min of a 3-h mating period. Exposure of the virulent donor strain to acridine orange or ethidium bromide does not result in loss of virulence, suggesting (but, of course, not proving conclusively) that the determinant(s) of virulence in Escherichia amylovora might be chromosomal rather than extrachromosomal.  相似文献   

6.
Genes involved in pathogenicity of several plant pathogens were shown to be induced at relatively cold temperatures. Loci from the fire blight pathogen Erwinia amylovora (Burrill) induced at 18 degrees C were identified using the miniTn5 transposon that contains the promoterless reporter gene gusA coding for beta-glucuronidase (GUS). Certain mutants (2.7%) expressed GUS predominantly at 18 degrees C on minimal medium plates, indicating that the transposon had been inserted downstream of a putatively thermoregulated promoter. Those mutants were further screened with a quantitative GUS fluorometric assay. A total of 21 mutants were selected: 19 mutants had a transposon insertion in temperature-dependent genetic loci, with a 2.2- to 6.3-fold induction of gusA gene expression at 18 degrees C, and two mutants with impaired growth at 18 degrees C. Some of these genetic loci encoded (i) proteins implicated in flagella biosynthesis, biotin biosynthesis, multi-drug efflux, and type II secretion protein, and (ii) proteins of unknown function.  相似文献   

7.
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)‐inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein‐encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small‐molecule inhibitors that disable T3SS function could be explored to control fire blight disease.  相似文献   

8.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoC(EA), and membrane-bound lytic murein transglycosylase MltE(EA). An insertional mutation within hopPtoC(EA) did not result in reduced virulence; however, an mltE(EA) knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.  相似文献   

9.
Capsulation and virulence in Erwinia amylovora   总被引:3,自引:0,他引:3  
Evidence is presented that capsulation may be one virulence determinant for Erwinia amylovora, the fireblight pathogen. When 15 virulent and seven avirulent strains were grown on a medium containing asparagine as the only source of carbon and nitrogen, or yeast peptone agar, or on a sugar medium containing an inorganic source of nitrogen, capsule production and virulence were not correlated. However, if a sugar or sugar alcohol was added to the asparagine medium or to yeast peptone agar all the virulent strains produced some or many capsulated cells whereas six of the avirulent ones did not. Capsules were also produced by all the virulent strains during infection. The existence of a seventh avirulent strain which was capsulated on all media except unsupplemented asparagine agar, suggested that capsule production was not the only virulence determinant.  相似文献   

10.
11.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages phiEa1 and phiEa7 and 3 novel phages named phiEa100, phiEa125, and phiEa116C, were identified based on differences in genome size and restriction fragment pattern. phiEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages phiEa100, phiEa7, and phiEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. phiEa116C contained an approximately 75-kb genome. phiEa1, phiEa7, phiEa100, phiEa125, and phiEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. phiEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 10(5) CFU.  相似文献   

12.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages Ea1 and Ea7 and 3 novel phages named Ea100, Ea125, and Ea116C, were identified based on differences in genome size and restriction fragment pattern. Ea1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages Ea100, Ea7, and Ea125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. Ea116C contained an approximately 75-kb genome. Ea1, Ea7, Ea100, Ea125, and Ea116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. Ea116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 105 CFU.  相似文献   

13.
14.
Erwinia amylovora Infection of Hawthorn Blossom   总被引:1,自引:0,他引:1  
Stamens of freshly opened flowers of hawthorn were inoculated with E;. amylovora and the development of blossom infection was monitored by viable bacterial counts and light and electron microscopy. Some bacterial multiplication occurred on the anther surface, over the dehiscence zone and over the junctions ot the anther-wall cells. bacteria invaded the anther loculc, via the ruptured dehiscence zone, and possibly also vid the stomata surrounding the filament insertion. bacteria within the locule multiplied rapidk with estimated doubling-times which were longer than those derived from in vitro data. Pollen grains Irom infected anthers were found to be heavily eontaminated with bacteria. The invasion of anther tissue, with the production of contaminated pollen, may be important epidemiologieally both as a phase of rapid bacterial multiplication and in the insect-mediated spread of this disease.  相似文献   

15.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA(Glu) gene and two with tRNA(Ile) and tRNA(Ala) genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA(Glu)-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA(Glu) operons and two tRNA(Ile) and tRNA(Ala) operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.  相似文献   

16.
17.
18.
The Hrp pathogenicity island (hrpPAI) of Erwinia amylovora not only encodes a type III secretion system (T3SS) and other genes required for pathogenesis on host plants, but also includes the so-called island transfer (IT) region, a region that originates from an integrative conjugative element (ICE). Comparative genomic analysis of the IT regions of two Spiraeoideae- and three Rubus-infecting strains revealed that the regions in Spiraeoideae-infecting strains were syntenic and highly conserved in length and genetic information, but that the IT regions of the Rubus-infecting strains varied in gene content and length, showing a mosaic structure. None of the ICEs in E. amylovora strains were complete, as conserved ICE genes and the left border were missing, probably due to reductive genome evolution. Comparison of the hrpPAI region of E. amylovora strains to syntenic regions from other Erwinia spp. indicates that the hrpPAI and the IT regions are the result of several insertion and deletion events that have occurred within the ICE. It also suggests that the T3SS was present in a common ancestor of the pathoadapted Erwinia spp. and that insertion and deletion events in the IT region occurred during speciation.  相似文献   

19.
20.
Gene Transmission Among Strains of Erwinia amylovora   总被引:10,自引:6,他引:4       下载免费PDF全文
Stable donor strains of Erwinia amylovora were obtained from strain EA178R(1) (harboring an Escherichia coli F'lac) by selection for clones resistant to curing by acridine orange. These donor strains (EA178R(1)-99 and EA178R(1)-111) transfer chromosomal markers (arg, cys, gua, ilv, met, pro, ser, trp); the frequency of the appearance of recombinants prototrophic for Cys, Gua, Met, Ser, and Trp is highest (> 10(-5)), followed by recombinants prototrophic for Arg, Ilv, and Pro (10(-7) to 10(-5)). The results of interrupted matings, as well as the frequency of transmission of various markers, suggest that cys is transferred as an early marker by both donor strains. The Hfr state of these donor strains is rather likely on the basis of the following observations. The donor strains exhibit a relatively efficient and possibly oriented chromosome transfer; the Lac(+) character is not cured by acridine orange in these donor strains; and these donor strains do not transfer F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号