首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The inner membrane protease (IMP) has two catalytic subunits, Imp1p and Imp2p, that exhibit nonoverlapping substrate specificity in mitochondria of the yeast Saccharomyces cerevisiae. The IMP also has at least one noncatalytic subunit, Som1p, which is required to cleave signal peptides from a subset of Imp1p substrates. To understand how Som1p mediates Imp1p substrate specificity, we addressed the possibility that Som1p functions as a molecular chaperone, which binds to specific substrates and directs them to the catalytic site. Our results show that cargo sequences attached to the signal peptide are important for Som1p-dependent presequence cleavage; however, no specific cargo sequence is required. Indeed, we show that a substrate normally destined for Imp2p is cleaved in a Som1p-dependent manner when the substrate is directed to Imp1p. These results argue against the notion that Som1p is a molecular chaperone. Instead, we propose that the cargo of some Imp1p substrates can assume a conformation incompatible with presequence cleavage. Som1p could thus act through Imp1p to improve cleavage efficiency early during substrate maturation.  相似文献   

3.
4.
5.
6.
We have probed the association of Flp recombinase with its DNA target using protein footprinting assays. The results are consistent with the domain organization of the Flp protein and with the general features of the protein-DNA interactions revealed by the crystal structures of the recombination intermediates formed by Cre, the Flp-related recombinase. The similarity in the organization of the Flp and Cre target sites and in their recognition by the respective recombinases implies that the overall DNA-protein geometry during strand cleavage in the two systems must also be similar. Within the functional recombinase dimer, it is the interaction between two recombinase monomers bound on either side of the strand exchange region (or spacer) that provides the allosteric activation of a single active site. Whereas Cre utilizes the cleavage nucleophile (the active site tyrosine) in cis, Flp utilizes it in trans (one monomer donating the tyrosine to its partner). By using synthetic Cre and Flp DNA substrates that are geometrically restricted in similar ways, we have mapped the positioning of the active and inactive tyrosine residues during cis and trans cleavage events. We find that, for a fixed substrate geometry, Flp and Cre cleave the labile phosphodiester bond at the same spacer end, not at opposite ends. Our results provide a model that accommodates local heterogeneities in peptide orientations in the two systems while preserving the global functional architecture of the reaction complex.  相似文献   

7.
Nitroxyl anion (NO-), the one-electron reduction product of nitric oxide (NO*), has been reported to be formed under various physiological conditions and to be cytotoxic, although the mechanism responsible for the toxic effects has not been identified. We have studied the effects of NO- generated from Angeli's salt (sodium trioxodinitrate) or Piloty's acid (N-hydoxybenzenesulfonamide) on DNA strand breakage and DNA base oxidation in vitro. Induction of strand breakage was dose- and time-dependent upon incubation of plasmid pBR322 with Angeli's salt or Piloty's acid. Similarly, 8-oxo-2'-deoxyguanosine and malondialdehyde were formed when calf-thymus DNA or 2'-deoxyribose, respectively, were incubated with Angeli's salt. Electron acceptors (ferricyanide, 4-hydroxy-TEMPO), that convert NO to NO*, inhibited the reactions, indicating that NO , but not NO*, is responsible for the reactions. Furthermore, the reactions were also inhibited by the presence of hydroxyl radical (HO*) scavengers, antioxidants, metal chelators and superoxide dismutase and catalase, implying involvement of free HO*. These results suggest that NO- is a possible endogenous source of HO*, that may be formed either directly from the reaction product of NO- with NO* (N2O2*-) or indirectly through H2O2 formation. Thus NO may play an important role as a cause of diverse pathophysiological conditions such as inflammation and neurodegenerative diseases.  相似文献   

8.
Helices, strands and coils in proteins of known three-dimensional structure, corresponding to heptapeptide and large sequences (‘probe’ peptides), were scanned against peptide sequences of variable length, comprising seven or more residues that correspond to a different conformation (‘target’ peptides) in protein crystal structures available from the Protein Data Bank (PDB). Where the ‘probe’ and ‘target’ peptide sequences exactly match, they correspond to ‘chameleon’ sequences in protein structures. We observed ∼548 heptapeptide and large chameleon sequences that included peptides in the coil conformation from 53,794 PDB files that were analyzed. However, after excluding several chameleon peptides based on the quality of protein structure data, redundancy and peptides associated with cloning artifacts, such as, histidine-tags, we observed only ten chameleon peptides in structurally different proteins and the maximum length comprised seven amino acid residues. Our analysis suggests that the quality of protein structure data is important for identifying possibly, the ‘true chameleons’ in PDB. Majority of the chameleon sequences correspond to an entire strand in one protein that is observed as part of helix sequence in another protein. The heptapeptide chameleons are characterized with a high propensity of alanine, leucine and valine amino acid residues. The total hydropathy values range between −11.2 and 22.9, the difference in solvent accessibility between 2.0 Å2 and 373 Å2 units and the difference in total number of residue neighbor contacts between 0 and 7 residues. Our work identifies for the first time heptapeptide and large sequences that correspond to a single complete helix, strand or coil, which adopt entirely different secondary structures in another protein.  相似文献   

9.
10.
11.
12.
Coliphage N4 virion-encapsidated, DNA-dependent RNA polymerase (vRNAP) is inactive on double-stranded N4 DNA; however, denatured promoter-containing templates are accurately transcribed. We report that all determinants of vRNAP promoter recognition exist in the template strand, indicating that this enzyme is a site-specific, single-stranded DNA-binding protein. We show that conserved sequences and the integrity of inverted repeats present at the promoters are essential for activity, suggesting the necessity for specific secondary structure. Evidence for such a structure is presented. We propose a model for in vivo utilization of vRNAP promoters in which template negative supercoiling yields single-strandedness at the promoter to reveal the determinants of vRNAP binding. This structure is stabilized by the binding of E. coli single-stranded DNA-binding protein to yield an "activated promoter."  相似文献   

13.
14.
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of –46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X–H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent’s rule is verified for the C–H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (?2ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT)4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.  相似文献   

15.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of abasic lesions at individual positions of the scissile and nonscissile strands on the rate of single-turnover DNA transesterification and the cleavage-religation equilibrium. The rate of DNA incision was reduced by factors of 350, 250, 60, and 10 when abasic sites replaced the -1N, +1T, +2T, and +4C bases of the scissile strand, but abasic lesions at +5C and +3C had little or no effect. Abasic lesions in the nonscissile strand in lieu of +4G, +3G, +2A, and +1A reduced the rate of cleavage by factors of 130, 150, 10, and 5, whereas abasic lesions at +5G and -1N had no effect. The striking positional asymmetry of abasic interference on the scissile and nonscissile strands highlights the importance of individual bases, not base pairs, in promoting DNA cleavage. The rate of single-turnover DNA religation by the covalent topoisomerase-DNA complex was insensitive to abasic sites within the CCCTT sequence of the scissile strand, but an abasic lesion at the 5'-OH nucleoside (-1N) of the attacking DNA strand slowed the rate of religation by a factor of 600. Nonscissile strand abasic lesions at +1A and -1N slowed the rate of religation by factors of approximately 140 and 20, respectively, and strongly skewed the cleavage-religation equilibrium toward the covalent complex. Thus, abasic lesions immediately flanking the cleavage site act as topoisomerase poisons.  相似文献   

16.
Lambda's Int protein acts as a specific topoisomerase at attachment sites, the DNA segments that are required for site-specific recombination. Int cleaves each strand of an attachment site at a unique place and creates strand exchanges by joining broken ends from two different parents. To study the action of Int topoisomerase in more detail, heteroduplex attachment sites were made by annealing strands that are complementary except for a few base pairs that lie in the region between the points of top and bottom strand exchange in the attachment site core. These heteroduplexes appear to interact normally with Int and its accessory proteins IHF and Xis. Although the heteroduplex sites are specifically cleaved by Int topoisomerase, rejoining of the broken DNA is hindered by the lack of Watson--Crick complementarity adjacent to the break. Because of this, heteroduplexes accumulate broken intermediates which are then processed in novel ways. We have used this feature to provide new information about functional differences between attachment sites, to investigate the way Xis protein controls directionality of site-specific recombination, and to demonstrate that Int protein can join strands indiscriminately and can therefore generate recombinants with either of two genetic polarities.  相似文献   

17.
18.
19.
CNS glia are targets for GDNF and neurturin   总被引:6,自引:0,他引:6  
 Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two closely related growth factors reported to selectively act on distinct neuronal populations in the CNS. Both GDNF and NTN signal through a receptor complex consisting of the signal transducing subunit, Ret, and a ligand-specific binding subunit, termed GDNF family receptor (GFR)α-1 and GFRα-2, respectively. By using RT-PCR, we observed that mRNAs encoding the subunits of both receptor complexes are widely expressed throughout the developing brain, suggesting the presence of targets for these growth factors other than the ones known today. We provide evidence that these targets include glial cells. Accepted: 12 July 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号