首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 884 毫秒
1.
2.
Histaminergic signalling constitutes an attractive target for treatment of neuropsychiatric disorders. One obstacle to developing new pharmacological options has been failure to identify putative specific histamine transporter responsible for histamine clearance. Although high-affinity histamine uptake was detected in neonatal cortical astrocytes, its existence in other brain regions remains largely unexplored. We investigated whether cerebellar and striatal astrocytes participate in histamine clearance and evaluated the role of organic cation transporters (OCT) in astroglial histamine transport. Kinetic and pharmacological characteristics of histamine transport were determined in cultured astrocytes derived from neonatal rat cerebellum, striatum and cerebral cortex. As well as astrocytes of cortical origin, cultured striatal and cerebellar astrocytes displayed temperature-sensitive, high-affinity histamine uptake. Exposure to ouabain or Na+-free medium, supplemented with choline chloride markedly depressed histamine transport in cortical astrocytes. Conversely, histamine uptake in striatal and cortical astrocytes was ouabain-resistant and was only partially diminished during incubation in the absence of Na+. Also, histamine uptake remained unaltered upon exposure to OCT inhibitor corticosterone, although OCTs were expressed in cultured astrocytes. Finally, histamine transport in cerebellar and striatal astrocytes was not sensitive to antidepressants. Despite common characteristics, cerebellar astrocytes had lower affinity, but markedly higher transport capacity for histamine compared to striatal astrocytes. Collectively, we provide evidence to suggest that cerebellar, striatal as well as cortical astrocytes possess saturable histamine uptake systems, which are not operated by OCTs. In addition, our data indicate that Na+-independent histamine carrier predominates in cerebellar and striatal astrocytes, whereas Na+-dependent transporter underlies histamine uptake in cortical astrocytes. Our findings implicate a role for histamine transporters in regulation of extracellular histamine concentration in cerebellum and striatum. Inhibition of histamine uptake might represent a viable option to modulate histaminergic neurotransmission.  相似文献   

3.
Cysteamine, a coenzyme A metabolite, induces duodenal ulcers in rodents. Our recent studies showed that ulcer formation was aggravated by iron overload and diminished in iron deficiency. We hypothesized that cysteamine is selectively taken up in the duodenal mucosa, where iron absorption primarily occurs, and is transported by a carrier-mediated process. Here we report that cysteamine administration in rats leads to cysteamine accumulation in the proximal duodenum, where the highest concentration of iron in the gastrointestinal tract is found. In vitro, iron loading of intestinal epithelial cells (IEC-6) accelerated reactive oxygen species (ROS) production and increased [(14)C]cysteamine uptake. [(14)C]Cysteamine uptake by isolated gastrointestinal mucosal cells and by IEC-6 was pH-dependent and inhibited by unlabeled cysteamine. The uptake of [(14)C]cysteamine by IEC-6 was Na(+)-independent, saturable, inhibited by structural analogs, H(2)-histamine receptor antagonists, and organic cation transporter (OCT) inhibitors. OCT1 mRNA was markedly expressed in the rat duodenum and in IEC-6, and transfection of IEC-6 with OCT1 siRNA decreased OCT1 mRNA expression and inhibited [(14)C]cysteamine uptake. Cysteamine-induced duodenal ulcers were decreased in OCT1/2 knockout mice. These studies provide new insights into the mechanism of cysteamine absorption and demonstrate that intracellular iron plays a critical role in cysteamine uptake and in experimental duodenal ulcerogenesis.  相似文献   

4.
Polyspecific organic cation and anion transporters of the SLC22 protein family are critically involved in absorption and excretion of drugs. To elucidate transport mechanisms, functional and biophysical characterization of purified transporters is required and tertiary structures must be determined. Here, we synthesized rat organic cation transporters OCT1 and OCT2 and rat organic anion transporter OAT1 in a cell free system in the absence of detergent. We solubilized the precipitates with 2% 1-myristoyl-2-hydroxy- sn-glycero-3-[phospho- rac-(1-glycerol)] (LMPG), purified the transporters in the presence of 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or octyl glucoside, and reconstituted them into proteoliposomes. From 1 mL reaction vessels 0.13-0.36 mg of transporter proteins was purified. Thus, from five to ten 1 mL reaction vessels sufficient protein for crystallization was obtained. In the presence of 1% LMPG and 0.5% CHAPS, OCT1 and OAT1 formed homo-oligomers but no hetero-oligomers. After reconstitution of OCT1, OCT2, and OAT1 into proteoliposomes, similar Michaelis-Menten K m values were measured for uptake of 1-methyl-4-phenylpyridinium and p-aminohippurate (PAH (-)) by the organic cation and anion transporters, respectively, as after expression of the transporters in cells. Using the reconstituted system, evidence was obtained that OAT1 operates as obligatory and electroneutral PAH (-)/dicarboxylate antiporter and contains a low-affinity chloride binding site that stimulates turnover. PAH (-) uptake was observed only with alpha-ketoglutarate (KG (2-)) on the trans side, and trans-KG (2-) increased the PAH (-) concentration in voltage-clamped proteoliposomes transiently above equilibrium. The V max of PAH (-)/KG (2-) antiport was increased by Cl (-) in a manner independent of gradients, and PAH (-)/KG (2-) antiport was independent of membrane potential in the absence or presence of Cl (-).  相似文献   

5.
The urotensin II (UII) gene is primarily expressed in the central nervous system, but the functions of UII in the brain remain elusive. Here, we show that cultured rat astrocytes constitutively express the UII receptor (UT). Saturation and competition experiments performed with iodinated rat UII ([(125)I]rUII) revealed the presence of high- and low-affinity binding sites on astrocytes. Human UII (hUII) and the two highly active agonists hUII(4-11) and [3-iodo-Tyr9]hUII(4-11) were also very potent in displacing [(125)I]rUII from its binding sites, whereas the non-cyclic analogue [Ser5,10]hUII(4-11) and somatostatin-14 could only displace [(125)I]rUII binding at micromolar concentrations. Reciprocally, rUII failed to compete with [(125)I-Tyr0,D-Trp8]somatostatin-14 binding on astrocytes. Exposure of cultured astrocytes to rUII stimulated [(3)H]inositol incorporation and increased intracellular Ca(2+) concentration in a dose-dependent manner. The stimulatory effect of rUII on polyphosphoinositide turnover was abolished by the phospholipase C inhibitor U73122, but only reduced by 56% by pertussis toxin. The GTP analogue Gpp(NH)p caused its own biphasic displacement of [(125)I]rUII binding and provoked an affinity shift of the competition curve of rUII. Pertussis toxin shifted the competition curve towards a single lower affinity state. Taken together, these data demonstrate that rat astrocytes express high- and low-affinity UII binding sites coupled to G proteins, the high-affinity receptor exhibiting the same pharmacological and functional characteristics as UT.  相似文献   

6.
The binding profile of [(3)H]BHDP ([(3)H]N-benzyl-N'-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine) was evaluated. [(3)H]BHDP labelled a single class of binding sites with high affinity (K(d)=2-3 nM) in rat liver mitochondria and synaptic membranes. The pharmacological characterization of these sites using sigma reference compounds revealed that these sites are sigma receptors and, more particularly, sigma1 receptors. Indeed, BHDP inhibited [(3)H]pentazocine binding, a marker for sigma1 receptors, with high affinity in a competitive manner. BHDP is selective for sigma1 receptors since it did not show any relevant affinity for most of the other receptors, ion channels or transporters tested. Moreover, in an in vitro model of cellular hypoxia, BHDP prevented the fall in adenosine triphosphate (ATP) levels caused by 24 h hypoxia in cultured astrocytes. Taken together, these results demonstrate that [(3)H]BHDP is a potent and selective ligand for sigma1 receptors showing cytoprotective effects in astrocytes.  相似文献   

7.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

8.
Excess extracellular glutamate, the main excitatory neurotransmitter, may result in excitotoxicity and neural injury. The present study was designed to study the effect of hydrogen sulfide (H(2)S), a novel neuromodulator, on hydrogen peroxide (H(2)O(2)) -induced glutamate uptake impairment and cellular injuries in primary cultured rat cortical astrocytes. We found that NaHS (an H(2)S donor, 0.1-1000 microM) reversed H(2)O(2)-induced cellular injury in a concentration-dependent manner. This effect was attenuated by L-trans-pyrrolidine-2,4-dicarboxylic (PDC), a specific glutamate uptake inhibitor. Moreover, NaHS significantly increased [(3)H]glutamate transport in astrocytes treated with H(2)O(2), suggesting that H(2)S may protect astrocytes via enhancing glutamate uptake function. NaHS also reversed H(2)O(2)-impaired glutathione (GSH) production. Blockade of glutamate uptake with PDC attenuated this effect, indicating that the effect of H(2)S on GSH production is secondary to the stimulation of glutamate uptake. In addition, it was also found that H(2)S may promote glutamate uptake activity via decreasing ROS generation, enhancing ATP production and suppressing ERK1/2 activation. In conclusion, our findings provide direct evidence that H(2)S has potential therapeutic value for oxidative stress-induced brain damage via a mechanism involving enhancing glutamate uptake function.  相似文献   

9.
Summary The uptake of [3H]-histamine into the retina and optic lobe of the locust, Schistocerca americana gregaria was studied by means of autoradiography at the light- and electron-microscopic levels. Light-microscopic autoradiography showed a significant accumulation of [3H]-histamine in several regions of the optic lobe. Dense accumulations of silver grains were concentrated along the medial border of the medullary neuropil and around the entire periphery of the lobula. No significant accumulations of grains were present within the retina or the neuropil zones of the lamina, medulla or lobula.Electron-microscopic autoradiography showed histamine-accumulating cells along the border of the medulla to exhibit electron density and morphology typical of glial cells. Labelled histamine was present within both glial cell bodies and their processes. In the region surrounding the neuropil of the lobula, [3H]-histamine was concentrated within fine glial processes wrapped around neuronal cell bodies and their axons. No neuronal cell bodies or axons showed accumulation of silver grains above background.These results are consistent with previous studies showing the glial uptake of amino acid and biogenic amine putative neurotransmitters. However, the lack of a demonstration of a specific uptake of histamine in neuropil zones makes it difficult to assess the role of histamine uptake in the inactivation of neurally released histamine in the locust visual system.  相似文献   

10.
Glucose transport systems in cultured neuronal cells and astrocytes of rats were characterized by measuring the uptake of 2-deoxy-D-[3H]glucose ([3H]2-DG) into the cells. Various sugars inhibited 2-DG uptake by neuronal cells and astrocytes similarly, a finding indicating that the substrate specificities of the transporters in the two types of cells were almost the same. However, the Km values for 2-DG of neuronal cells and astrocytes were 1.7 and 0.36 mM, respectively. The uptake of 2-DG was strongly inhibited by cytochalasin B. Nucleosides, such as adenosine, inosine, and uridine, inhibited 2-DG uptake competitively in both neuronal cells and astrocytes. The uptake by both types of cells were also inhibited by forskolin, but not by cyclic AMP, an observation suggesting that forskolin bound directly to the transporters to cause inhibition. Its inhibition was competitive in astrocytes and noncompetitive in neuronal cells. Astrocytes contained a glucose transporter with a subunit molecular weight of 45K, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling using [3H]cytochalasin B as a probe.  相似文献   

11.
(R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid (NO 328) has previously been shown to be a potent anticonvulsant in both mice and rats. Here, we report that NO 328 is a potent inhibitor of gamma-[3H]aminobutyric acid [( 3H]GABA) uptake in a rat forebrain synaptosomal preparation (IC50 = 67 nM) and in primary cultures of neurons and astrocytes. Inhibition of [3H]GABA uptake by NO 328 is apparently of a mixed type when NO 328 is preincubated before [3H]GABA uptake; the inhibition is apparently competitive without preincubation. NO 328 itself is not a substrate for the GABA uptake carrier, but NO 328 is a selective inhibitor of [3H]GABA uptake. Binding to benzodiazepine receptors, histamine H1 receptors, and 5-hydroxytryptamine1A receptors was inhibited by NO 328 at 5-30 microM, whereas several other receptors and uptake sites were unaffected. [3H]NO 328 showed saturable and reversible binding to rat brain membranes in the presence of NaCl. The specific binding of [3H]NO 328 was inhibited by known inhibitors of [3H]GABA uptake; GABA and the cyclic amino acid GABA uptake inhibitors were, however, less potent than expected. This indicates that the binding site is not identical to, but rather overlapping with, the GABA recognition site of the uptake carrier. The affinity constant for binding of [3H]NO 328 is 18 nM, and the Bmax is 669 pmol/g of original rat forebrain tissue. The regional distribution of NaCl-dependent [3H]NO 328 binding followed that of synaptosomal [3H]GABA uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Na+-coupled carboxylate transporters (NaCs) mediate the uptake of tricarboxylic acid cycle intermediates in mammalian tissues. Of these transporters, NaC3 (formerly known as Na+-coupled dicarboxylate transporter 3, NaDC3/SDCT2) and NaC2 (formerly known as Na+-coupled citrate transporter, NaCT) have been shown to be expressed in brain. There is, however, little information available on the precise distribution and function of both transporters in the CNS. In the present study, we investigated the functional characteristics of Na+-dependent succinate and citrate transport in primary cultures of astrocytes and neurons from rat cerebral cortex. Uptake of succinate was Na+ dependent, Li+ sensitive and saturable with a Michaelis constant (Kt) value of 28.4 microM in rat astrocytes. Na+ activation kinetics revealed that the Na+ to succinate stoichiometry was 3:1 and the concentration of Na+ necessary for half-maximal transport was 53 mM. Although uptake of citrate in astrocytes was also Na+ dependent and saturable, its Kt value was significantly higher (approximately 1.2 mM) than that of succinate. Unlabeled succinate (2 mM) inhibited Na+-dependent [14C]succinate (18 microM) and [14C]citrate (4.5 microM) transport completely, whereas unlabeled citrate inhibited Na+-dependent [14C]succinate uptake more weakly. Interestingly, N-acetyl-L-aspartate, which is the second most abundant amino acid in the nervous system, also completely inhibited Na+-dependent succinate transport in rat astrocytes. The inhibition constant (Ki) for the inhibition of [14C]succinate uptake by unlabeled succinate, N-acetyl-L-aspartate and citrate was 15.9, 155 and 764 microM respectively. In primary cultures of neurons, uptake of citrate was also Na+ dependent and saturable with a Kt value of 16.2 microM, which was different from that observed in astrocytes, suggesting that different Na+-dependent citrate transport systems are expressed in neurons and astrocytes. RT-PCR and immunocytochemistry revealed that NaC3 and NaC2 are expressed in cerebrocortical astrocytes and neurons respectively. These results are in good agreement with our previous reports on the brain distribution pattern of NaC2 and NaC3 mRNA using in situ hybridization. This is the first report of the differential expression of different NaCs in astrocytes and neurons. These transporters might play important roles in the trafficking of tricarboxylic acid cycle intermediates and related metabolites between glia and neurons.  相似文献   

13.
Brain cells are especially rich in polyunsaturated fatty acids (PUFA), mainly the n-3 PUFA docosahexaenoic acid (DHA) and the n-6 PUFA arachidonic acid (AA). They are released from membranes by PLA2 during neurotransmission, and may regulate glutamate uptake by astroglia, involved in controlling glutamatergic transmission. AA has been shown to inhibit glutamate transport in several model systems, but the contribution of DHA is less clear and has not been evaluated in astrocytes. Because the high DHA content of brain membranes is essential for brain function, we investigated the role of DHA in the regulation of astroglial glutamate transport.We evaluated the actions of DHA and AA using cultured rat astrocytes and suspensions of rat brain membranes (P1 fractions). DHA reduced d-[3H]aspartate uptake by cultured astrocytes and cortical membrane suspensions, while AA did not. This also occurred in astrocytes enriched with α-tocopherol, indicating that it was not due to peroxidation products. The reduction of d-[3H]aspartate uptake by DHA did not involve any change in the concentrations of membrane-associated astroglial glutamate transporters (GLAST and GLT-1), suggesting that DHA reduced the activity of the transporters. In contrast with the inhibition induced by free-DHA, we found no effect of membrane-bound DHA on d-[3H]aspartate uptake. Indeed, the uptake was similar in astrocytes with varying amount of DHA in their membrane (induced by long-term supplementation with DHA or AA). Therefore, DHA reduces glutamate uptake through a signal-like effect but not through changes in the PUFA composition of the astrocyte membranes. Also, reactive astrocytes, induced by a medium supplement (G5), were insensitive to DHA. This suggests that DHA regulates synaptic glutamate under basal condition but does not impair glutamate scavenging under reactive conditions.These results indicate that DHA slows astroglial glutamate transport via a specific signal-like effect, and may thus be a physiological synaptic regulator.  相似文献   

14.
Guanine nucleotides have been shown to stimulate phosphoinositide breakdown in brain membranes, but no potentiation of such an effect by agonist was demonstrated. We have studied the effect of carbachol and histamine on guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulation of inositol phosphates formation in [3H]inositol-labelled rat brain cortical membranes. In this preparation, GTP[S] enhancement of phosphoinositide hydrolysis required the presence of MgATP and low Ca2+ concentration (100 nM). Carbachol potentiation of the GTP[S] effect was only observed when 1 mM-deoxycholate was also added. Under these conditions, stimulated production of [3H]inositol phosphates was linear for at least 15 min, and [3H]inositol bisphosphate [( 3H]IP2) accounted for approx. 80%, whereas the amount of [3H]inositol trisphosphate [( 3H]IP3) was very low. Stimulation by GTP[S] was concentration-dependent (half-maximal effect at 0.86 microM), and its maximal effect (815% over basal) was increased by 1 mM-carbachol (1.9-fold) and -histamine (1.7-fold). Both agonists decreased the slope index of the GTP[S] concentration/effect curve to values lower than unity, suggesting the appearance of some heterogeneity in the population of guanine-nucleotide-binding proteins (G-proteins) involved. The carbachol and histamine effects were also concentration-dependent, and were inhibited by atropine and mepyramine respectively. Fluoroaluminate stimulated phosphoinositide hydrolysis to a higher extent than GTP[S] plus carbachol, and these stimulations were not additive, indicating that the same polyphosphoinositide phospholipase C-coupled G-protein mediates both effects.  相似文献   

15.
Affinity-purified antibodies specific for ubiquitin were found to inhibit the sodium-dependent uptake of [3H]choline, gamma-[3H]aminobutyric acid [( 3H]GABA), [3H]glutamate, [3H]norepinephrine, [3H]aspartate, and [3H]serotonin in rat cerebral cortical synaptosomes at a low concentration (10 micrograms/ml). These antibodies (termed anti-Ub) had no effect on the sodium-independent uptake of these substances or their calcium-dependent efflux. Synaptosomal [3H]deoxyglucose uptake was not affected in normal Krebs Ringer buffer containing 10 mM glucose, but was inhibited in glucose-free medium. Other nonneuronal sodium-dependent transport processes were found to be unaffected by 10 micrograms/ml anti-Ub, suggesting that anti-Ub does not bind indiscriminantly to sodium-binding sites on sodium-dependent organic solute transporters. Finally, anti-Ub inhibited sodium-dependent [3H]GABA and [3H]glutamate uptake in plasma membrane ghosts, devoid of membrane potential, which were derived from rat cerebral cortical synaptosomes. These results suggest that neuronal transporters or sites proximal to them may be ubiquitinylated on the plasma membrane surface.  相似文献   

16.
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency, which leads to accumulation in body fluids and in brain of predominantly glutaric acid (GA), and to a lesser extent of 3-hydroxyglutaric and glutaconic acids. Neurological presentation is common in patients with GA I. Although the mechanisms underlying brain damage in this disorder are not yet well established, there is growing evidence that excitotoxicity may play a central role in the neuropathogenesis of this disease. In the present study, preparations of synaptosomes, synaptic plasma membranes and synaptic vesicles, as well as cultured astrocytes from rat forebrain were exposed to various concentrations of GA for the determination of the basal and potassium-induced release of [(3)H]glutamate by synaptosomes, Na(+)-independent glutamate binding to synaptic membranes and vesicular glutamate uptake and Na(+)-dependent glutamate uptake into astrocytes, respectively. GA (1-100 nM) significantly stimulated [(3)H]glutamate binding to brain plasma membranes (40-70%) in the absence of extracellular Na(+) concentrations, reflecting glutamate binding to receptors. Furthermore, this stimulatory effect was totally abolished by the metabotropic glutamate ligands DHPG, DCG-IV and l-AP4, attenuated by the ionotropic non-NMDA glutamate receptor agonist AMPA and had no interference of the NMDA receptor antagonist MK-801. Moreover, [(3)H]glutamate uptake into synaptic vesicles was inhibited by approximately 50% by 10 and 100 nM GA and Na(+)-dependent [(3)H]glutamate uptake by astrocytes was significantly increased (up to 50%) in a dose-dependent manner (maximal stimulation at 100 microM GA). In contrast, synaptosomal glutamate release was not affected by the acid at concentrations as high as 1 mM. These results indicate that the inhibition of glutamate uptake into synaptic vesicles by low concentrations GA may result in elevated concentrations of the excitatory neurotransmitter in the cytosol and the stimulatory effect of this organic acid on glutamate binding may potentially cause excitotoxicity to neural cells. Finally, taken together these results and previous findings showing that GA markedly decreases synaptosomal glutamate uptake, it is possible that the stimulatory effect of GA on astrocyte glutamate uptake might indicate that astrocytes may protect neurons from excitotoxic damage caused by GA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

17.
18.
To determine whether the liver toxin phalloidin is transported into hepatocytes by one of the known bile salt transporters, we expressed the sodium-dependent Na+/taurocholate cotransporting polypeptide (Ntcp) and several sodium-independent bile salt transporters of the organic anion transporting polypeptide (OATP/SLCO) superfamily in Xenopus laevis oocytes and measured uptake of the radiolabeled phalloidin derivative [3H]demethylphalloin. We found that rat Oatp1b2 (previously called Oatp4 (Slc21a10)) as well as human OATP1B1 (previously called OATP-C (SLC21A6)) and OATP1B3 (previously called OATP8 (SLC21A8)) mediate uptake of [3H]demethylphalloin when expressed in X. laevis oocytes. Transport of increasing [3H]demethylphalloin concentrations was saturable with apparent Km values of 5.7 microM (Oatp1b2), 17 microM (OATP1B1) and 7.5 microM (OATP1B3). All other tested Oatps/OATPs as well as the rat liver Ntcp did not transport [3H]demethylphalloin. Therefore, we conclude that rat Oatp1b2 as well as human OATP1B1 and OATP1B3 are responsible for phalloidin uptake into rat and human hepatocytes.  相似文献   

19.
The nucleoside transport systems in cultured epididymal epithelium were characterized and found to be similar between the proximal (caput and corpus) and distal (cauda) regions of the epididymis. Functional studies revealed that 70% of the total nucleoside uptake was Na(+) dependent, while 30% was Na(+) independent. The Na(+)-independent nucleoside transport was mediated by both the equilibrative nitrobenzylthioinosine (NBMPR)-sensitive system (40%) and the NBMPR-insensitive system (60%), which was supported by a biphasic dose response to NBMPR inhibition. The Na(+)-dependent [(3)H]uridine uptake was selectively inhibited 80% by purine nucleosides, indicating that the purine nucleoside-selective N1 system is predominant. Since Na(+)-dependent [(3)H]guanosine uptake was inhibited by thymidine by 20% and Na(+)-dependent [(3)H]thymidine uptake was broadly inhibited by purine and pyrimidine nucleosides, this suggested the presence of the broadly selective N3 system accounting for 20% of Na(+)-dependent nucleoside uptake. Results of RT-PCR confirmed the presence of mRNA for equilibrative nucleoside transporter (ENT) 1, ENT2, and concentrative nucleoside transporter (CNT) 2 and the absence of CNT1. It is suggested that the nucleoside transporters in epididymis may be important for sperm maturation by regulating the extracellular concentration of adenosine in epididymal plasma.  相似文献   

20.
Drug metabolism in liver is the major pathway for xenobiotic elimination from the body. Access to intracellular metabolising enzymes is possible through passive diffusion of lipophilic drugs through cell membrane or active uptake of more polar drugs by specific uptake transporters. Organic Anion Transporting Polypeptides (OATP/SLCO) and Organic Cation Transporters (OCT/SLC22A) are among the most important transporters involved in xenobiotic transport into hepatocytes. Isolated hepatocytes are the model of choice for drug metabolism and drug transport investigations. These primary cells are used either as fresh directly after isolation from liver biopsies, or after subsequent cryopreservation in liquid nitrogen. While cryopreserved hepatocytes are a more convenient and flexible tool for in vitro investigations, information on the functionality of transporter activity after cryopreservation is still sparse. The present study investigated the effect of cryopreservation of human hepatocytes on the uptake of [(3)H]-estradiol-17β-glucuronide (E(2)17βG, substrate of OATP1B1/3/SLCO1B1/3) and [(3)H]-1-methyl-4-phenylpyridinium (MPP+, substrate of OCT1/SLC22A1) into hepatocytes from 6 and 5 human donors, respectively. The results showed that cryopreserved human hepatocytes display carrier-mediated uptake of E(2)17βG and MPP+. While the affinity of E(2)17βG for OATP1B1/3/SLCO1B1/3 was not affected by cryopreservation (Km unchanged, the Wilcoxon signed pair t test gave p=1), V(max) and CL(uptake) values decreased in average by 47% (p=0.06). The passive diffusion of E(2)17βG decreased significantly after cryopreservation (p=0.03). Cryopreservation did not affect Km, V(max) or the passive diffusion of MPP+ in human hepatocytes. In conclusion, the present study showed that cryopreserved human hepatocytes are useful tool to investigate hepatic uptake mediated by OATP1B1/3/SLCO1B1/3 or OCT1/SLC22A1, two of the most important hepatic uptake transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号