首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.  相似文献   

2.
The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.  相似文献   

3.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   

4.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

5.
《Autophagy》2013,9(7):793-794
Interactions between the Bcl-2 family proteins and the mitochondrial fission and fusion machinery regulate cell death in mammals and worms. In Drosophila, the Bcl-2 family proteins have not been shown to be major regulators of cell death. However, emerging evidence suggests that mitochondrial remodeling may be important in Drosophila cell death. We recently demonstrated a series of events that occur during follicle removal in the Drosophila ovary that included mitochondrial remodeling and clustering, followed by uptake and degradation in the follicle cells. Importantly, the Bcl-2 family proteins, mitochondrial dynamics, and autophagic proteins regulate these events.  相似文献   

6.
RALA and RALBP1 regulate mitochondrial fission at mitosis   总被引:2,自引:0,他引:2  
Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission. Equal distribution of mitochondria to daughter cells during mitosis requires fission. Mitotic mitochondrial fission depends on both the relocalization of the large GTPase DRP1 to the outer mitochondrial membrane and phosphorylation of Ser 616 on DRP1 by the mitotic kinase cyclin B-CDK1 (ref. 2). We now report that these processes are mediated by the small Ras-like GTPase RALA and its effector RALBP1 (also known as RLIP76, RLIP1 or RIP1; refs 3, 4). Specifically, the mitotic kinase Aurora A phosphorylates Ser 194 of RALA, relocalizing it to the mitochondria, where it concentrates RALBP1 and DRP1. Furthermore, RALBP1 is associated with cyclin B-CDK1 kinase activity that leads to phosphorylation of DRP1 on Ser 616. Disrupting either RALA or RALBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B-CDK1 converge on RALA and RALBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function.  相似文献   

7.
Tanner EA  McCall K 《Autophagy》2011,7(7):793-794
Interactions between the Bcl-2 family proteins and the mitochondrial fission and fusion machinery regulate cell death in mammals and worms. In Drosophila, the Bcl-2 family proteins have not been shown to be major regulators of cell death. However, emerging evidence suggests that mitochondrial remodeling may be important in Drosophila cell death. We recently demonstrated a series of events that occur during follicle removal in the Drosophila ovary that included mitochondrial remodeling and clustering, followed by uptake and degradation in the follicle cells. Importantly, the Bcl-2 family proteins, mitochondrial dynamics, and autophagic proteins regulate these events.  相似文献   

8.
The transmembrane receptor Notch is used repeatedly during development for a variety of essential functions. During Drosophila oogenesis, Notch activity is required first to specify particular follicle cell fates, then to promote the differentiation of all follicle cell types, to promote border cell migration, and then to form dorsal appendages, raising the question as to how Notch activity is spatially and temporally regulated. Here we show the Notch activity pattern during oogenesis. Notch activation was found in many follicle cells at stage 6 but then at stage 9 was restricted to migrating border cells, despite uniform expression of Delta. Expression of Kuzbanian (KUZ), a metalloproteinase that can activate Notch as well as cleave other substrates, is enriched in border cells at stage 9; and dominant-negative KUZ caused a strong border cell migration defect, without affecting expression of markers of border cell fate or follicle cell differentiation. Constitutively active Notch rescued the migration defect due to dominant-negative KUZ, and conditional alleles of Delta and Notch also exhibited border cell migration defects. Expression of two different reporters of Notch activity was lost upon expression of dominant-negative KUZ. Taken together these results show that Notch activation and KUZ expression are restricted to border cells at stage 9 of oogenesis and are required for migration, but not differentiation, of these cells. This represents a previously unrecognized mechanism for achieving spatial restriction of Notch signaling.  相似文献   

9.
10.
Proper assembly and maintenance of epithelia are critical for normal development and homeostasis. Here, using the Drosophila ovary as a model, we identify a role for the B1 isoform of the ecdysone receptor (EcR-B1) in this process. We performed a reverse genetic analysis of EcR-B1 function during oogenesis and demonstrate that silencing of this receptor isoform causes loss of integrity and multilayering of the follicular epithelium. We show that multilayered follicle cells lack proper cell polarity with altered distribution of apical and basolateral cell polarity markers including atypical-protein kinase C (aPKC), Discs-large (Dlg), and Scribble (Scrib) and aberrant accumulation of adherens junctions and F-actin cytoskeleton. We find that the EcR-B1 isoform is required for proper follicle cell polarity both during early stages of oogenesis, when follicle cells undergo the mitotic cell cycle, and at midoogenesis when these cells stop dividing and undergo several endocycles. In addition, we show that the EcR-B1 isoform is required during early oogenesis for follicle cell survival and that disruption of its function causes apoptotic cell death induced by caspase.  相似文献   

11.
12.
13.
Substrate-specific degradation of proteins by the ubiquitin-proteasome pathway is a precise mechanism that controls the abundance of key cell regulators. SCF complexes are a family of E3 ubiquitin ligases that target specific proteins for destruction at the 26S-proteasome. These complexes are composed of three constant polypeptides--Skp1, Cullin1/3 and Roc1/Rbx1--and a fourth variable adapter, the F-box protein. Slimb (Slmb) is a Drosophila F-Box protein that fulfills several roles in development and cell physiology. We analyzed its participation in egg chamber development and found that slmb is required in both the follicle cells and the germline at different stages of oogenesis. We observed that in slmb somatic clones, morphogenesis of the germarium and encapsulation of the cyst were altered, giving rise to egg chambers with extra germline cells and two oocytes. Furthermore, in slmb somatic clones, we observed ectopic Fasciclin 3 expression, suggesting a delay in follicle cell differentiation, which correlated with the occurrence of ectopic polar cells, lack of interfollicular stalks and mislocalization of the oocyte. Later in oogenesis, Slmb was required in somatic cells to specify the position, size and morphology of dorsal appendages. Mild overactivation of the Dpp pathway caused similar phenotypes that could be antagonized by simultaneous overexpression of Slmb, suggesting that Slmb might normally downregulate the Dpp pathway in follicle cells. Indeed, ectopic expression of a dad-LacZ enhancer trap revealed that the Dpp pathway was upregulated in slmb somatic clones and, consistent with this, ectopic accumulation of the co-Smad protein, Medea, was recorded. By analyzing slmb germline clones, we found that loss of Slmb provoked a reduction in E2f2 and Dp levels, which correlated with misregulation of mitotic cycles during cyst formation, abnormal nurse cell endoreplication and impairment of dumping of the nurse cell content into the oocyte.  相似文献   

14.
During Drosophila oogenesis, the formation of the egg respiratory appendages and the micropyle require the shaping of anterior and dorsal follicle cells. Prior to their morphogenesis, cells of the presumptive appendages are determined by integrating dorsal-ventral and anterior-posterior positional information provided by the epidermal growth factor receptor (EGFR) and Decapentaplegic (Dpp) pathways, respectively. We show here that another signaling pathway, the Drosophila Jun-N-terminal kinase (JNK) cascade, is essential for the correct morphogenesis of the dorsal appendages and the micropyle during oogenesis. Mutant follicle cell clones of members of the JNK pathway, including DJNKK/hemipterous (hep), DJNK/basket (bsk), and Djun, block dorsal appendage formation and affect the micropyle shape and size, suggesting a late requirement for the JNK pathway in anterior chorion morphogenesis. In support of this view, hep does not affect early follicle cell patterning as indicated by the normal expression of kekkon (kek) and Broad-Complex (BR-C), two of the targets of the EGFR pathway in dorsal follicle cells. Furthermore, the expression of the TGF-beta homolog dpp, which is under the control of hep in embryos, is not coupled to JNK activity during oogenesis. We show that hep controls the expression of puckered (puc) in the follicular epithelium in a cell-autonomous manner. Since puc overexpression in the egg follicular epithelium mimics JNK appendages and micropyle phenotypes, it indicates a negative role of puc in their morphogenesis. The role of the JNK pathway in the morphogenesis of follicle cells and other epithelia during development is discussed.  相似文献   

15.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

16.
Mitochondrial fusion and fission are important for a great variety of cellular functions, including energy metabolism, development, aging and cell death. Many of the core components mediating mitochondrial dynamics in human cells have been first identified and mechanistically analyzed in model organisms, such as Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In particular, the functions of FZO/mitofusin and Mgm1/EAT-3/OPA1 in fusion and Dnm1/DRP1 in fission have been remarkably well conserved in yeasts, worms, flies and mammals. On the other hand, mechanisms to coordinate and regulate the activity of these molecular machines appear to be more diverse in different organisms. Here, I will discuss how S. cerevisiae, C. elegans and Drosophila have contributed to our current understanding of the cellular machineries mediating the dynamic behaviour of mitochondria.  相似文献   

17.
Li Q  Feng S  Yu L  Zhao G  Li M 《Fly》2011,5(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

18.
《Fly》2013,7(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

19.
Mitochondrial fragmentation is recognized to be an important event during the onset of apoptosis. In this current study, we have used single cell imaging to investigate the role of the mitochondrial fission protein DRP‐1 on mitochondrial morphology and mitochondrial fragmentation in primary hippocampal neurons undergoing necrotic or apoptotic cell death. Treatment of neurons with 500 nM staurosporine (apoptosis) or 30 μM glutamate (l ‐Glu; excitotoxic necrosis) produced a fragmentation and condensation of mitochondria, which although occurred over markedly different time frames appeared broadly similar in appearance. In neurons exposed to an apoptotic stimuli, inhibiting DRP‐1 activity using overexpression of the dominant negative DRP‐1K38A slowed the rate of mitochondrial fragmentation and decreased total cell death when compared to overexpression of wild‐type DRP‐1. In contrast, responses to l ‐Glu appeared DRP‐1 independent. Similarly, alterations in the fission/fusion state of the mitochondrial network did not alter mitochondrial Ca2+ uptake or the ability of l ‐Glu to stimulate excitotoxic Ca2+ overload. Finally, apoptosis‐induced mitochondrial fragmentation was observed concurrent with recruitment of Bax to the mitochondrial membrane. In contrast, during glutamate excitotoxicity, Bax remained in the cytosolic compartment. We conclude that different pathways lead to the appearance of fragmented mitochondria during necrotic and apoptotic neuronal cell death. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:335–341, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20336  相似文献   

20.
BACKGROUND AND AIMS: Recent reports have described dramatic alterations in mitochondrial morphology during metazoan apoptosis. A dynamin-related protein (DRP) associated with mitochondrial outer membrane fission is known to be involved in the regulation of apoptosis. This study analysed the relationship between mitochondrial fission and regulation of plant cell death. METHODS: Transgenic plants were generated possessing Arabidopsis DRP3B (K56A), the dominant-negative form of Arabidopsis DRP, mitochondrial-targeted green fluorescent protein and mouse Bax. KEY RESULTS: Arabidopsis plants over-expressing DRP3B (K56A) exhibited long tubular mitochondria. In these plants, mitochondria appeared as a string-of-beads during cell death. This indicates that DRP3B (K56A) prevented mitochondrial fission during plant cell death. However, in contrast to results for mammalian cells and yeast, Bax-induced cell death was not inhibited in DRP3B (K56A)-expressing plant cells. Similarly, hydrogen peroxide-, menadione-, darkness- and salicylic acid-induced cell death was not inhibited by DRP3B (K56A) expression. CONCLUSIONS: These results indicate that the systems controlling cell death in animals and plants are not common in terms of mitochondrial fission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号