首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
We have isolated and sequenced a mouse replacement variant histone H3.3 cDNA. It corresponds to the most abundant mRNA expressed from a unique gene by the use of one out of three polyadenylation sites. The 3' non coding region of H3.3 is very long (approximately 1100 nt) and highly conserved throughout evolution since it is about 95% homologous to the 3' non coding region of the chicken H3.3B gene. We studied the expression of the H3.3 gene during SV40- and polyoma-induced mitotic host reaction in confluent, Go-arrested primary mouse kidney cell cultures. H3.3 replacement variant mRNA steady state levels increased during the Go to S-phase transition, apparently as the result of two mechanisms: one related to cell growth, whereas the other was linked to cellular DNA synthesis. The latter mechanism was however far less pronounced than with replication histone variant mRNAs. The biological implications of these results are discussed.  相似文献   

13.
14.
15.
16.
In sea urchins, "early" histone proteins are synthesized during cleavage and blastula formation, "late" histone proteins in subsequent stages of development. To understand the molecular mechanisms responsible for this ontogenic switch in histone subtype synthesis, we determined the absolute amounts, rates of synthesis, and rates of turnover of late H2b histone mRNAs during development. We showed previously that late H2b mRNA comprises several mRNA isotypes. In this study, we used both a class-specific DNA probe to measure the amounts of the late H2b mRNA isotypes collectively, and a gene-specific probe to measure amounts of a particular late H2b mRNA encoded by a gene known as L1. We found that the amount of late H2b mRNA increased dramatically from 85,000 molecules per embryo in the 16-hr blastula to a peak of 670,000 molecules per embryo in the 24-hr mesenchyme blastula, and fell to 380,000 molecules per embryo in the 72-hr pluteus larva. The L1 late H2b mRNA achieved its maximum abundance earlier than the late H2b mRNA class as a whole, reaching a peak of 34% of total late H2b in the 14-hr blastula and declining to 7% in the pluteus larva. Measurements of the rate of incorporation of [3H]uridine into late class H2b mRNA, performed by a novel in vivo isotope incorporation method, enabled us to calculate both synthesis rates and half-lives of late H2b mRNA during development. These calculations showed (1) that the increase in late H2b mRNA level between 16 and 24 hr postfertilization is regulated primarily if not entirely at the level of mRNA synthesis; and (2) that the half-life of late H2b mRNA is comparatively short, around 20 min, at all stages examined.  相似文献   

17.
To determine whether histone genes are coordinately regulated, histone mRNA concentrations were measured in exponentially growing L6 myoblasts, S-phase synchronized myoblasts and in differentiating myoblasts. The levels of various histone mRNA subspecies declined rapidly and coordinately once myoblasts were given the signal to differentiate. mRNA levels were reduced on average to 1-5% of the amount observed in exponentially growing cells by 48 h after the signal to differentiate. The reductions occurred in concert with the cessation of DNA synthesis as the cells differentiated. Inhibition of DNA synthesis by treating myoblasts with Ara-C or hydroxyurea resulted in a histone mRNA half-life of 10-13 min for each of the histones examined. One example of non-coordinate regulation was observed however among the H4 mRNA subspecies in S-phase synchronized cells. The levels of two major subspecies of H4 mRNA increased coordinately in S-phase compared to levels observed in cells growing exponentially. A third subspecies of H4 mRNA on the other hand was found to decline by 50%. These studies suggest that the majority of histone mRNA subspecies are under coordinate control, although one exception has been noted among the subspecies of histone H4.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号