首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To define the role of the surface lipooligosaccharide (LOS) of Haemophilus ducreyi in the pathogenesis of chancroid, Tn916 mutants of H. ducreyi 35000 defective in expression of the murine monoclonal antibody (MAb) 3F11 epitope on H. ducreyi LOS were identified by immunologic screening. One mutant, designated 1381, has an LOS which lacks the MAb 3F11 epitope and migrates with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene disrupted by the Tn916 element in strain 1381 was identified by cloning the sequences flanking the Tn916 element. The sequences were then used to probe a lambda DASHII genomic library. In strain 1381, Tn916 interrupts a gene which encodes an open reading frame (ORF) with an Mr of 40,246. This ORF has homology to the product of the rfaK gene of Escherichia coli. The major LOS glycoform produced by strain 1381 was analyzed by using a combination of mass spectrometry, linkage and composition analysis, and 1H nuclear magnetic resonance spectroscopy. The major LOS species was found to terminate in a single glucose attached to the heptose (L-glycero-D-manno-heptose, or Hep) trisaccharide core. In the wild-type strain 35000, glucose serves as the acceptor for the addition of the D-glycero-D-manno-heptose (or DDHep), which extends to form the mature branch of the H. ducreyi LOS. This mature oligosaccharide is in turn partially capped by the addition of sialic acid (NeuAc), i.e., NeuAc2 alpha-->3Gal beta1-->4GlcNAc beta1-->3Gal beta1-->4DDHep alpha1-->6Glc beta1 (W. Melaugh et al., Biochemistry 33:13070-13078, 1994). Since this LOS terminates prior to the addition of the branch DD-heptose, this gene is likely to encode the D-glycero-D-manno-heptosyltransferase. Strain 1381 exhibits a significant reduction in adherence to and invasion of primary human keratinocytes. This defect was complemented by the cloned heptosyltransferase gene, indicating that the terminal portion of the LOS oligosaccharide plays an important role in adherence to human keratinocytes.  相似文献   

2.
The lipooligosaccharide (LOS) of Neisseria meningitidis contains heptose (Hep) residues that are modified with phosphoethanolamine (PEtn) at the 3 (3-PEtn) and/or 6 (6-PEtn) position. The lpt3 (NMB2010) and lpt6 (NMA0408) genes of N. meningitidis, which are proposed to encode the required HepII 3- and 6-PEtn transferases, respectively, were cloned and overexpressed as C-terminally polyhistidine-tagged fusion proteins in Escherichia coli and found to localize to the inner membrane, based on sucrose density gradient centrifugation. Lpt3-His6 and Lpt6-His6 were purified from Triton X-100-solubilized membranes by nickel chelation chromatography, and dot blot analysis of enzymatic reactions with 3-PEtn- and 6-PEtn-specific monoclonal antibodies demonstrated conclusively that Lpt3 and Lpt6 are phosphatidylethanolamine-dependent LOS HepII 3- and 6-PEtn transferases, respectively, and that both enzymes are capable of transferring PEtn to both fully acylated LOS and de-O-acylated (de-O-Ac) LOS. Further enzymatic studies using capillary electrophoresis-mass spectrometry (MS) demonstrated that both Lpt3 and Lpt6 are capable of transferring PEtn to de-O-Ac LOS molecules already containing PEtn at the 6 and 3 positions of HepII, respectively, demonstrating that there is no obligate order of PEtn addition in the generation of 3,6-di-PEtn LOS moieties in vitro.The Gram-negative bacterium Neisseria meningitidis is the causative agent of invasive meningococcal disease, which is a major cause of morbidity and mortality worldwide, especially in children (33). These infections are severe, causing death in 10% of cases and serious long-term effects in 10 to 20% of patients that survive the disease (7). While capsular-polysaccharide-based vaccines against serogroup C are readily available and a combination conjugate vaccine against serogroups A, C, Y, and W-135 has recently been released, there is currently no vaccine that offers protection against serogroup B meningococcal infections. This is primarily due to the poor immunogenicity of the α-2,8-linked N-acetylneuraminic acid capsular polysaccharide produced by serogroup B (44) combined with concerns that structural similarities between the capsule and glycans on host cell surface structures could cause a serogroup B-based capsular conjugate vaccine to elicit an autoimmune response (4, 23). For these reasons, current strategies for vaccine development have focused on alternative surface antigens, including outer membrane proteins and lipooligosaccharides (LOS).LOS is an important virulence determinant for Neisseria spp., and the severity of the illness caused by neisserial infection correlates with the levels of LOS-containing outer membrane vesicles being released (33). The LOS of Neisseria spp. (Fig. (Fig.1)1) lacks the repeating O-antigen region typically observed in enteric bacteria and contains a 1,3-di-l-glycero-α-d-manno-heptose (di-l,d-Hep)-di-3-deoxy-d-manno-octulosonic acid (di-Kdo) inner-core backbone (15). The heptose proximal to Kdo (HepI) is substituted at the 4 position with β-d-glucose (β-d-Glc), and additional substitutions to this Glc comprise the outer-core region. The distal heptose (HepII) is invariably substituted at the 2 position with α-d-GlcNAc and is also typically substituted with phosphoethanolamine (PEtn) at the 3 (3-PEtn) and/or 6 (6-PEtn) position. The presence of 7-PEtn has also been reported (22, 30); however, recent nuclear magnetic resonance (NMR) studies in our laboratory have confirmed that the LOS from these strains have PEtn substitutions solely at the 6 position (34). Approximately 70% of N. meningitidis strains contain 3-PEtn alone, as demonstrated by reactivity to the 3-PEtn-specific monoclonal antibody (MAb) L3B5 (20), while the majority of the remaining strains contain 6-PEtn alone, with only a few strains containing 3,6-di-PEtn or no PEtn.Open in a separate windowFIG. 1.Neisserial lipooligosaccharides utilized as substrates in this study. (A) Structures of the core regions of the different LOS substrates. (B) Differences in the lipid A region after different chemical modifications. de-O-Ac, LOS after de-O-acylation by hydrazinolysis; HF-de-O-Ac, de-O-Ac LOS after dephosphorylation by incubation with HF; KOH, LOS after complete deacylation by incubation with KOH and re-N-acetylation.The genes encoding the putative HepII 3- and 6-PEtn transferases in N. meningitidis, lpt3 (NMB2010) and lpt6 (NMA0408), respectively, have previously been identified, and mutants with chromosomal knockouts of these genes were shown to lack PEtn on HepII (20, 43). Interestingly, however, only a small proportion of strains containing both lpt3 and lpt6 were found to exhibit mixtures of 3- and 6- and/or 3,6-di-PEtn-substituted LOS (43). While this could potentially be explained by the presence of a competing 3-Glc transferase gene, lgtG, an N. meningitidis NMB lgtG knockout mutant was generated previously and found not to produce 3-PEtn-containing LOS in spite of the lpt3 gene being present in the chromosome (38), suggesting a more complex scenario. Biochemical characterization of the proteins encoded by the N. meningitidis lpt3 and lpt6 genes is therefore warranted not only to confirm that Lpt3 and Lpt6 exhibit HepII 3- and 6-PEtn transferase activities, respectively, but also to gain insight into the substrate specificities of these enzymes that may explain these observations. The lpt3 gene of N. gonorrhoeae (lpt3Ng) was recently identified by O''Connor et al. (24), based on homology to N. meningitidis lpt3, and they were able to demonstrate that Lpt3Ng is capable of restoring MAb 2-1-L8 reactivity (3-PEtn dependent) to LOS from an N. gonorrhoeae lpt3 mutant. However, they were unable to perform more extensive characterization, due to low activity levels and instability of the purified Lpt3Ng protein (24).In this study, we describe the overexpression, purification, and functional characterization of both Lpt3 and Lpt6 of N. meningitidis by using a combination of immunological and mass spectrometric techniques.  相似文献   

3.
D E Kerwood  H Schneider  R Yamasaki 《Biochemistry》1992,31(51):12760-12768
We studied the structure of the lipooligosaccharide (LOS) that is produced by a variant A of strain MS11mk. This variant produces a single LOS that is recognized by monoclonal antibody (MAb) 2-1-L8. In a recent study of the pathogenesis of Neisseria gonorrhoeae in male volunteers, variant A gave rise to other phase variants that produce higher molecular weight LOSs, and these LOS were associated with virulence. Definition of the structure of the variant A LOS is important to understand the biosynthesis of LOS and its expression in vivo. The dephosphorylated oligosaccharide (OS) structure derived from the variant A LOS was analyzed by two-dimensional NMR and methylation analysis. The OS structure was found to be a truncated form of the LOS produced by strain F62 [Yamasaki et al. (1991) Biochemistry 30, 10566-10575]; the variant A OS is a hexamer, a beta-lactosyl residue linked to a tetrasaccharide: Gal beta 1-->4Glc beta 1-->4[GlcNAc alpha 1-->2Hep alpha 1-->3]Hep alpha 1-->KDO. We determined that the variant A LOS is a precursor for the synthesis of higher MW LOS. We also studied expression of the MAb 2-1-L8-defined epitope present on the variant A LOS. Our data indicate that the MAb-defined epitope is not a linear beta-lactosyl residue but its specificity is directed toward the phosphorylated GlcNAc-Hep-Hep residue. Since this MAb binds to gonococci, at least part of the phosphorylated diheptose area is exposed on the gonococcal surface.  相似文献   

4.
F62 LOS of Neisseria gonorrhoeae consists of two major LOS components; the higher and smaller molecular weight (MW) components were recognized by MAbs 1-1-M and 3F11 respectively. Base-line separation of the two major oligosaccharide (OS) components from F62 LOS was achieved by Bio-Gel P-4 chromatography after dephosphorylation of the OS mixture. The structures of the two major OSs were studied by chemical, enzymatic, and 2D NMR methods [double quantum filtered COSY (DQF-COSY), delayed COSY (D-COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), pure-absorption 2D NOE NMR] as well as methylation followed by GC/MS analysis. The OS component derived from the MAb 1-1-M defined LOS component was determined to have a V3-(beta-N-acetylgalactosaminyl)neolactotetraose structure (GalNAc is beta 1----3-linked to a neolactotetraose) at one of its nonreducing termini as shown below. The above pentaose is linked to a branched diheptose-KDO core in which a GlcNAc is alpha-linked. The OS component derived from the MAb 3F11 defined LOS component did not have a GalNAc residue. The rest of its structure was identical to that of the OS-1, and a neolactotetraose is exposed at its nonreducing terminus. [formula: see text]  相似文献   

5.
The biosynthesis of the lipooligosaccharide (LOS) in Neisseria meningitidis has a control point that regulates the extension of the alpha-chain on heptose (I) of the LOS. The gene that encodes the protein responsible for this control had been identified elsewhere, but the enzyme encoded by the gene was not characterized. We have now shown that this same control mechanism operates in the related species, Neisseria gonorrhoeae, using a gene knockout and subsequent characterization of the LOS species produced. We also cloned and expressed the enzyme from both of these pathogens. Using a synthetic acceptor substrate, we have shown unequivocally that the enzyme is an alpha-1,2-N-acetylglucosaminyltransferase. Experiments with both the core oligosaccharide and the synthetic acceptors suggests that the addition of the alpha-1,2-N-acetylglucosamine moiety on the heptose (II) residue precedes the addition of the ethanolamine phosphate at the O3 position on this heptose (II), and that in the absence of the alpha-1,2-N-acetylglucosamine moiety leads to the addition of an extra ethanolamine phosphate on the heptose (II) residue. Our data do not support the hypothesis that ethanolamine phosphate at O3 of heptose (II) is added and is then required for the addition of the N-acetylglucosamine at O2 by the LgtK enzyme. This enzyme represents a control point in the biosynthesis of the LOS of this pathogen and is a potential target for therapeutic intervention.  相似文献   

6.
LPS of NTHi comprises a conserved tri-l-glycero-D-manno-heptosyl inner-core moiety (l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-alpha-Kdop) in which addition of PEtn to the central heptose (HepII) in strain Rd is controlled by the gene lpt6. It was recently shown that NTHi strain 981 contains an additional PEtn linked to O-3 of the terminal heptose of the inner-core moiety (HepIII). In order to establish whether lpt6 is also involved in adding PEtn to HepIII, lpt6 in strain 981 was inactivated. The structure of the LPS of the resulting mutant strain 98llpt6 was investigated by MS and NMR techniques by which it was confirmed that the lpt6 gene product is responsible for addition of PEtn to O-6 of HepII in strain 981. However, it is not responsible for adding PEtn to O-3 of HepIII since the 981lpt6 mutant still had full substitution with PEtn at HepIII.  相似文献   

7.
We identified Neisseria meningitidis lipooligosaccharide (LOS) as an acceptor for complement component C4b (C4b). Phosphoethanolamine (PEA) residues on the second heptose (HepII) residue in the LOS core structure formed amide linkages with C4b. PEA at the 6-position of HepII (6-PEA) was more efficient than 3-PEA in binding C4b. Strains bearing 6-PEA bound more C4b than strains with 3-PEA and were more susceptible to complement-mediated killing in serum bactericidal assays. Deleting 3-PEA from a strain that expressed both 3- and 6-PEA simultaneously on HepII did not decrease C4b binding. Glycose chain extension of the first heptose residue (HepI) influenced the nature of the C4b-LOS linkage. Predominantly ester C4b-LOS bonds were seen when lacto-N-neotetraose formed the terminus of the glycose chain extension of HepI with 3-PEA on HepII in the LOS core. Related LOS species with more truncated chain extensions from HepI bound C4b via amide linkages to 3-PEA on HepII. However, 6-PEA in the LOS core bound C4b even when the glycose chain from HepI bore lacto-N-neotetraose at the terminus. The C4A isoform exclusively formed amide linkages, whereas C4B bound meningococci preferentially via ester linkages. These data may serve to explain the preponderance of 3-PEA-bearing meningococci among clinical isolates, because 6-PEA enhances C4b binding that may facilitate clearance of 6-PEA-bearing strains resulting from enhanced serum killing by the classical pathway of complement.  相似文献   

8.
Haemophilus ducreyi is the etiologic agent of chancroid, a genital ulcer disease. The lipooligosaccharide (LOS) is considered to be a major virulence determinant and has been implicated in the adherence of H. ducreyi to keratinocytes. Strain A77, an isolate from the Paris collection, is serum sensitive, poorly adherent to fibroblasts, and deficient in microcolony formation. Structural analysis indicates that the LOS of strain A77 lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS as well as the sialic acid substitution. From an H. ducreyi 35000HP genomic DNA library, a clone complementing the defect in A77 was identified by immunologic screening with monoclonal antibody (MAb) 3F11, a MAb which recognizes the N-acetyllactosamine portion of strain 35000HP LOS. The clone contained a 4-kb insert that was sequenced. One open reading frame which encodes a protein with a molecular weight of 33,400 was identified. This protein has homology to glycosyltransferases of Haemophilus influenzae, Haemophilus somnus, Neisseria species, and Pasteurella haemolytica. The putative H. ducreyi glycosyltransferase gene was insertionally inactivated, and an isogenic mutant of strain 35000HP was constructed. The most complex LOS glycoform produced by the mutant has a mobility on sodium dodecyl sulfate-polyacrylamide gel identical to that of the LOS of strain A77 and lacks the 3F11-binding epitope. Structural studies confirm that the most complex glycoform of the LOS isolated from the mutant lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS. Although previously published data suggested that the serum-sensitive phenotype of A77 was due to the LOS mutation, we observed that the complemented A77 strain retained its serum-sensitive phenotype and that the galactosyltransferase mutant retained its serum-resistant phenotype. Thus, the serum sensitivity of strain A77 cannot be attributed to the galactosyltransferase mutation in strain A77.  相似文献   

9.
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as Neisseria meningitidis is determined by decorations on the heptose inner core, including O-acetylation of the terminal N-acetylglucosamine (GlcNAc) attached to HepII. In this report, we show that O-acetylation of the meningococcal lipooligosaccharide (LOS) inner core has an important role in determining inner core assembly and immunotype expression. The gene encoding the LOS O-acetyltransferase, lot3, was identified by homology to NodX from Rhizobium leguminosarum. Inactivation of lot3 in strain NMB resulted in the loss of the O-acetyl group located at the C-3 position of the terminal GlcNAc of the LOS inner core. Inactivation of either lot3 or lgtG, which encodes the HepII glucosyltransferase, did not result in the appearance of the O-3-linked phosphoethanolamine (PEA) groups on the LOS inner core. Construction of a double mutant in which both lot3 and lgtG were inactivated resulted in the appearance of O-3-linked PEA groups on the LOS inner core. In conclusion, O-acetylation status of the terminal GlcNAc of the gamma-chain of the meningococcal LOS inner core is an important determinant for the appearance or exclusion of the O-3-linked PEA group on the LOS inner core and contributes to LOS structural diversity. O-Acetylation also likely influences resistance to complement-mediated lysis and may be important in LOS conjugate vaccine design.  相似文献   

10.
Aerobactin, a dihydroxamate siderophore produced by many strains of enteric bacteria, stimulated the growth of Neisseria gonorrhoeae FA19 and F62 in iron-limiting medium. However, gonococci did not produce detectable amounts of aerobactin in the Escherichia coli LG1522 aerobactin bioassay. We probed gonococcal genomic DNA with the cloned E. coli aerobactin biosynthesis (iucABCD), aerobactin receptor (iutA), and hydroxamate utilization (fhuCDB) genes. Hybridization was detected with fhuB sequences but not with the other genes under conditions which will detect 70% or greater homology. Similar results were obtained with 21 additional strains of gonococci by colony filter hybridization. A library of DNA from N. gonorrhoeae FA19 was constructed in the phasmid vector lambda SE4, and a clone was isolated that complemented the fhuB mutation in derivatives of E. coli BU736 and BN3307. These results suggest that fhuB is a conserved gene and may play a fundamental role in iron acquisition by N. gonorrhoeae.  相似文献   

11.
The inner core structures of the lipooligosaccharides (LOS) of Neisseria meningitidis are potential vaccine candidates because both bactericidal and opsonic antibodies can be generated against these epitopes. In an effort to better understand LOS biosynthesis and the potential immunogenicity of the LOS inner core, we have determined the LOS structure from a meningococcal rfaK mutant CMK1. The rfaK gene encodes the transferase that adds an alpha-N-acetylglucosaminosyl residue to O-2 of the inner core heptose (Hep) II of the LOS. The LOS oligosaccharide from this mutant was previously shown to contain only Hep, 3-deoxy-D-manno-2-octulosonic acid (Kdo), and multiple phosphoethanolamine (PEA) substituents (Kahler et al., 1996a, J. Bacteriol., 178, 1265-1273). The complete structure of the oligosaccharide (OS) component of the LOS from mutant CMK1 was determined using glycosyl composition and linkage analyses, and 1H, 13C, and 31P nuclear magnetic resonance spectroscopy. The CMK1 OS structure contains a PEA group at O-3 of Hep II in place of the usual glucosyl residue found at this position in the completed L2 LOS glycoform from the parent NMB strain. The PEA group at O-6 of Hep II, however, is present in both the CMK1 mutant LOS and parental NMB L2 LOS structures. The structure of the OS from CMK1 suggests that PEA substituents are transferred to both the O-3 and O-6 positions of Hep II prior to: (1) the incorporation of the alpha-GlcNAc on Hep II; (2) the synthesis of the alpha-chain on Hep I; and (3) the substitution of the glycosyl residue at the O-3 Hep II, which distinguishes L2 and L3 immunotypes. The LOS structure of the CMK1 mutant makes it a candidate immunogen that could generate broadly cross-reactive inner-core LOS antibodies.  相似文献   

12.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   

13.
Gonococcal virulence is thought to rely on multiple characteristics including the production of an extracellular protease specific for human IgA1. Using a sensitive filter assay we have isolated an Escherichia coli clone which harbours the gene of Neisseria gonorrhoeae MS11 IgA protease on a multicopy number plasmid. This clone secrets IgA protease activity to an extent similar to that of the parental MS11 strain. By exonucleolytic digestion of the cloned insert we obtained a fragment of 4.6 kb which could not be shortened further without loss of IgA protease expression. Compared with the cloned IgA protease gene from N. gonorrhoeae F62, this minimal gene segment shows marked differences in the arrangement of restriction sites. We suppose that these differences determine strain-specific variations of N. gonorrhoeae IgA proteases and also affect the secretory properties of the enzyme when produced in E. coli. A novel purification procedure developed for IgA protease of N. gonorrhoeae allowed us to correlate the enzyme activity with a distinct protein band in SDS acrylamide gels. By comparison with the enzyme prepared from the E. coli clone, we identified a 105-kd protein as the extracellular form of gonococcal IgA protease.  相似文献   

14.
Alcaligenes sp. strain MFA1 inhibits microconidial germination and germination-tube elongation of Fusarium oxysporum f.sp. dianthi and reduces the severity of fusarium wilt of carnation, presumably as a result of its production of a siderophore (G.Y. Yuen and M.N. Schroth. 1986. Phytopathology, 76:171-176). Derivative strains of MFA1, deficient in antagonism against F. oxysporum and in iron-limited growth, were obtained by Tn5 mutagenesis. The presence of a single Tn5 insertion in the genomic DNA of each derivative strain was detected by Southern analysis. Marker-exchange mutagenesis of strain MFA1 with DNA fragments, containing Tn5 and flanking sequences cloned from representative mutants, confirmed the association of single Tn5 insertions with the loss of antifungal activity and iron-independent growth of MFA1. These results are consistent with the involvement of siderophore biosynthesis by MFA1 in the inhibition of F. oxysporum.  相似文献   

15.
16.
We previously described a gene, lpt3, required for the addition of phosphoethanolamine (PEtn) at the 3 position on the beta-chain heptose (HepII) of the inner-core Neisseria meningitidis lipopolysaccharide (LPS), but it has long been recognized that the inner-core LPS of some strains possesses PEtn at the 6 position (PEtn-6) on HepII. We have now identified a gene, lpt6 (NMA0408), that is required for the addition of PEtn-6 on HepII. The lpt6 gene is located in a region previously identified as Lgt-3 and is associated with other LPS biosynthetic genes. We screened 113 strains, representing all serogroups and including disease and carriage strains, for the lpt3 and lpt6 genes and showed that 36% contained both genes, while 50% possessed lpt3 only and 12% possessed lpt6 only. The translated amino acid sequence of lpt6 has a homologue (72.5% similarity) in a product of the Haemophilus influenzae Rd genome sequence. Previous structural studies have shown that all H. influenzae strains investigated have PEtn-6 on HepII. Consistent with this, we found that, among 70 strains representing all capsular serotypes and nonencapsulated H. influenzae strains, the lpt6 homologue was invariably present. Structural analysis of LPS from H. influenzae and N. meningitidis strains where lpt6 had been insertionally inactivated revealed that PEtn-6 on HepII could not be detected. The translated amino acid sequences from the N. meningitidis and H. influenzae lpt6 genes have conserved residues across their lengths and are part of a family of proven or putative PEtn transferases present in a wide range of gram-negative bacteria.  相似文献   

17.
A fragment of chromosomal DNA encoding the lgtE gene of Neisseria gonorrhoeae strain F62 was amplified by PCR and cloned into the expression vector pET15b. Functional LgtE was purified and its biochemical properties were determined. The purified enzyme was maximally active in buffer containing manganese; minimal activity was obtained in buffer containing other divalent cations. LgtE was only able to mediate the addition of UDP-galactose into neisserial lipooligosaccharides (LOSs). We used a variety of genetically defined and chemically verified LOS structures to determine acceptor specificity. LgtE was able to mediate the addition of galactose into a variety of LOS structures, indicating the this enzyme possesses broad acceptor specificity. Furthermore, it was able to add multiple galactose residues onto LOS. We also determined that this enzyme was capable of adding galactose onto both the alpha and beta chains of neisserial LOS.  相似文献   

18.
DNA from Neisseria gonorrhoeae KH45 was partially digested with Sau3A and inserted into the BamHI site of the cloning vector pLES2 . After introduction into Escherichia coli JM83 by transformation, two different size classes of plasmids were isolated that could complement the proAB deletion of JM83 . These plasmids ( pLES4 and pLES7 ) were characterized by restriction endonuclease digestion. Southern hybridization demonstrated that the inserts had sequence homology. Various deletions of these plasmids were constructed that had lost the ability to complement the proA lesion of chi 463, the proB lesion of chi 340, or both (plasmids pLES9 , pLES8 , and pLES10 , respectively). These deleted plasmids were introduced into a proline-requiring strain of N. gonorrhoeae, F62, with plasmids pLES4 , pLES7 , and pLES8 possessing the ability to correct the proline requirement of F62. Further analysis indicated that the hybrid plasmids were stably maintained as plasmids in N. gonorrhoeae.  相似文献   

19.
We have investigated the structure of the lipopolysaccharide (LPS) of nontypeable Haemophilus influenzae (NTHi) strain 2019, a prototype strain that is used for studies of NTHi biology and disease. Analysis of LPS from wild type and lex2B, lpt3 and pgm mutant strains using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS, confirmed the previously established structure in which lactose is linked to the proximal heptose (HepI) of the conserved triheptosyl inner-core moiety, l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A. Importantly, our data provide further structural detail whereby extensions from the middle heptose (HepII) are now characterized as β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp-(1→3 and truncated versions thereof. PEtn substitutes O-3 of the distal heptose (HepIII) of the inner-core moiety. This PEtn substituent was absent in the lpt3 mutant indicating that Lpt3 is the transferase required to add PEtn to the distal heptose. Interestingly, in the lex2B mutant strain HepIII was found to be substituted at O-2 by β-d-Glcp which, in turn, can be further extended. Contrary to previous findings, LPS of the pgm mutant strain contained minor glycoforms having β-d-Glcp linked to O-4 of HepI and also glycoforms with an additional PEtn which could be assigned to HepIII. Acetate groups and one glycine residue further substitute HepIII in NTHi 2019.  相似文献   

20.
Structural analysis of the pilE region of Neisseria gonorrhoeae P9   总被引:6,自引:0,他引:6  
We have determined the nucleotide sequence of an expressed structural pilus gene (pilE) derived from Neisseria gonorrhoeae strain P9-2. Detailed analysis of nucleotide sequences upstream from pilE revealed a silent, truncated pilin gene segment that was linked to families of DNA elements (RS1 and RS3) that have previously been identified at the major silent pilin gene locus (pilS1) and at pilE of the independently isolated N. gonorrhoeae strain MS11ms. A nucleotide sequence downstream from pilE was reminiscent of the recognition sequences of several recombinases, including Tn3 tnpR product (resolvase), suggesting a possible role for site-specific events in the recombinational modulation of pilus expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号