首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wild-type measles virus (MV) strains use human signaling lymphocyte activation molecule (SLAM) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both SLAM and CD46 as receptors. Although the expression of SLAM is restricted to cells of the immune system (lymphocytes, dendritic cells, and monocytes), histopathological studies with humans and experimentally infected monkeys have shown that MV also infects SLAM-negative cells, including epithelial, endothelial, and neuronal cells. In an attempt to explain these findings, we produced the enhanced green fluorescent protein (EGFP)-expressing recombinant MV (IC323-EGFP) based on the wild-type IC-B strain. IC323-EGFP showed almost the same growth kinetics as the parental recombinant MV and produced large syncytia exhibiting green autofluorescence in SLAM-positive cells. Interestingly, all SLAM-negative cell lines examined also showed green autofluorescence after infection with IC323-EGFP, although the virus hardly spread from the originally infected individual cells and thus did not induce syncytia. When the number of EGFP-expressing cells after infection was taken as an indicator, the infectivities of IC323-EGFP for SLAM-negative cells were 2 to 3 logs lower than those for SLAM-positive cells. Anti-MV hemagglutinin antibody or fusion block peptide, but not anti-CD46 antibody, blocked IC323-EGFP infection of SLAM-negative cells. This infection occurred under conditions in which entry via endocytosis was inhibited. These results indicate that MV can infect a variety of cells, albeit with a low efficiency, by using an as yet unidentified receptor(s) other than SLAM or CD46, in part explaining the observed MV infection of SLAM-negative cells in vivo.  相似文献   

2.
The interaction of measles virus with its receptor signaling lymphocytic activation molecule (SLAM) controls cell entry and governs tropism. We predicted potential interface areas of the measles virus attachment protein hemagglutinin to begin the investigation. We then assessed the relevance of individual amino acids located in these areas for SLAM-binding and SLAM-dependent membrane fusion, as measured by surface plasmon resonance and receptor-specific fusion assays, respectively. These studies identified one hemagglutinin protein residue, isoleucine 194, which is essential for primary binding. The crystal structure of the hemagglutinin-protein localizes Ile-194 at the interface of propeller blades 5 and 6, and our data indicate that a small aliphatic side chain of residue 194 stabilizes a protein conformation conducive to binding. In contrast, a quartet of residues previously shown to sustain SLAM-dependent fusion is not involved in binding. Instead, our data prove that after binding, this quartet of residues on propeller blade 5 conducts conformational changes that are receptor-specific. Our study sets a structure-based stage for understanding how the SLAM-elicited conformational changes travel through the H-protein ectodomain before triggering fusion protein unfolding and membrane fusion.  相似文献   

3.
Measles virus (MV) infection causes an acute childhood disease, associated in certain cases with infection of the central nervous system and development of a severe neurological disease. We have generated transgenic mice ubiquitously expressing the human protein SLAM (signaling lymphocytic activation molecule), or CD150, recently identified as an MV receptor. In contrast to all other MV receptor transgenic models described so far, in these mice infection with wild-type MV strains is highly pathogenic. Intranasal infection of SLAM transgenic suckling mice leads to MV spread to different organs and the development of an acute neurological syndrome, characterized by lethargy, seizures, ataxia, weight loss, and death within 3 weeks. In addition, in this model, vaccine and wild-type MV strains can be distinguished by virulence. Furthermore, intracranial MV infection of adult transgenic mice generates a subclinical infection associated with a high titer of MV-specific antibodies in the serum. Finally, to analyze new antimeasles therapeutic approaches, we created a recombinant soluble form of SLAM and demonstrated its important antiviral activity both in vitro and in vivo. Taken together, our results show the high susceptibility of SLAM transgenic mice to MV-induced neurological disease and open new perspectives for the analysis of the implication of SLAM in the neuropathogenicity of other morbilliviruses, which also use this molecule as a receptor. Moreover, this transgenic model, in allowing a simple readout of the efficacy of an antiviral treatment, provides unique experimental means to test novel anti-MV preventive and therapeutic strategies.  相似文献   

4.
5.
Measles virus (MV) is a human pathogen using two distinct cell surface receptors for entry into host cells. We present here a comparative analysis for binding of the MV receptors CD46 and SLAM to the measles virus hemagglutinin protein (MVH, Edmonston strain). Soluble monomeric and dimeric MVH variants were prepared in mammalian cells and their conformation assessed using a panel of monoclonal antibodies. The two receptor molecules specifically bound to the MVH protein with distinct binding modes. The association rate (k(a)) for SLAM binding to MVH was very low ( approximately 3000 m(-1)s(-1)), about 20 times lower that the k(a) determined for CD46 binding. However, SLAM bound tighter to the virus protein than CD46, as revealed by a 5-fold lower dissociation rate (k(d), approximately 1.5 x 10(-3) s(-1)). These data suggest that the SLAM receptor binds to a less accessible and more hydrophobic surface on MVH than the CD46 receptor, as illustrated in a binding model. Despite the differences in kinetics, receptor competition binding experiments revealed that they recognize overlapping sites in MVH. Indeed, a panel of anti-MVH monoclonal antibodies equally inhibited binding of both receptor molecules. The similar immune reactivity of the two receptor binding sites suggests that the shift in receptor usage by MV may not be driven by immune responses.  相似文献   

6.
Signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been reported as the receptor of measles virus (MV) interacting with MV hemagglutinin (MVH). In this study, we developed a baculovirus-derived vector, the Bacmid-egfp, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP) under the control of the promoter of very late polyhedrin gene from Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and employed the recombinant baculovirus to express SLAM in Sf9 (Spodoptera frugiperda) cells and investigate SLAM function. The result showed that the integration of the EGFP expression cassette in the Bac-to-Bac system facilitated research with the system without introducing compromises due to its use. SLAM protein fused to His-tag was expressed in Sf9 cells through the modified Bac-to-Bac system. The expressed SLAM was identified as approximately 46 kDa, and it presented on the cell surface, as revealed by fluorescent immunochemical staining and confocal microscopic analysis. The pull-down assay proved that SLAM protein expressed in this system could interact with MVH protein. After incubating with MV vaccine strain S191, cell fusion was only observed in the Sf9 cells expressing both EGFP and SLAM from recombinant baculovirus rather than those expressing EGFP only from the modified viral vector. Furthermore, MV replicated and induced apoptosis in the Sf9 cells with SLAM expression.  相似文献   

7.
For measles viruses, fusion on the cell membrane is an important initial step in the entry into the infected cells. The recent research indicated that hemagglutinin firstly leads the conformational changes in the fusion protein then co-mediates the membrane fusion. In the work, we use the co-immunoprecipitation and pull-down techniques to identify the interactions among fusion protein, hemagglutinin and signaling lymphocyte activation molecule (SLAM), which reveal that the three proteins can form a functional complex to mediate the SLAM-dependent fusion. Moreover, under the confocal microscope, fusion protein and hemagglutinin protein can show the cocapping mediated by the SLAM. So fusion protein not only is involved in the fusion but also might directly interact with the SLAM to be a new fusion-trimer model, which might account for the infection mechanism of measles virus.  相似文献   

8.
Measles virus (MV) interacts with cellular receptors on the surface of peripheral blood lymphocytes (PBL) which mediate virus binding and uptake. Simultaneously, the direct contact of the viral glycoproteins with the cell surface induces a negative signal blocking progression to the S phase of the cell cycle, resulting in a pronounced proliferation inhibition. We selected a monoclonal antibody (MAb 5C6) directed to the surface of highly MV-susceptible B cells (B95a), which inhibits binding to and infection of cells with MV wild-type and vaccine strains. By screening a retroviral cDNA library from human splenocytes (ViraPort; Stratagene) with this antibody, we cloned and identified the recognized molecule as signaling lymphocytic activation molecule (SLAM; CD150), which is identical to the MV receptor recently found by H. Tatsuo et al. (Nature 406:893-897, 2000). After infection of cells, and after surface contact with MV envelope proteins, SLAM is downregulated from the cell surface of activated PBL and cell lines. Although anti-SLAM and/or anti-CD46 antibodies block virus binding, they do not interfere with the contact-mediated proliferation inhibition. In addition, the cell-type-specific expression of SLAM does not correlate with the sensitivity of cells for proliferation inhibition. The data indicate that proliferation inhibition induced by MV contact is independent of the presence or absence of the virus-binding receptors SLAM and CD46.  相似文献   

9.
Measles virus (MV), one of the most contagious agents, infects immune cells using the signaling lymphocyte activation molecule (SLAM) on the cell surface. A complex of SLAM and the attachment protein, hemagglutinin (MVH), has remained elusive due to the intrinsic handling difficulty including glycosylation. Furthermore, crystals obtained of this complex are either nondiffracting or poorly-diffracting. To solve this problem, we designed a systematic approach using a combination of the following techniques; (1) a transient expression system in HEK293SGnTI(-) cells, (2) lysine methylation, (3) structure-guided mutagenesis directed at better crystal packing, (4) Endo H treatment, (5) single-chain formation for stable complex, and (6) floating-drop vapor diffusion. Using our approach, the receptor-binding head domain of MV-H covalently fused with SLAM was successfully crystallized and diffraction was improved from 4.5 ? to a final resolution of 3.15 ? . These combinational methods would be useful as crystallization strategies for complexes of glycoproteins and their receptors.  相似文献   

10.
Human signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been shown to be a cellular receptor for measles virus (MV). Chinese hamster ovary cells transfected with a mouse SLAM cDNA were not susceptible to MV and the vesicular stomatitis virus pseudotype bearing MV envelope proteins alone, indicating that mouse SLAM cannot act as an MV receptor. To determine the functional domain of the receptor, we tested the abilities of several chimeric SLAM proteins to function as MV receptors. The ectodomain of SLAM comprises the two immunoglobulin superfamily domains (V and C2). Various chimeric transmembrane proteins possessing the V domain of human SLAM were able to act as MV receptors, whereas a chimera consisting of human SLAM containing the mouse V domain instead of the human V domain no longer acted as a receptor. To examine the interaction between SLAM and MV envelope proteins, recombinant soluble forms of SLAM were produced. The soluble molecules possessing the V domain of human SLAM were shown to bind to cells expressing the MV hemagglutinin (H) protein but not to cells expressing the MV fusion protein or irrelevant envelope proteins. These results indicate that the V domain of human SLAM is necessary and sufficient to interact with the MV H protein and allow MV entry.  相似文献   

11.
12.
Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses.  相似文献   

13.
The human signaling lymphocyte activation molecule (SLAM, also called CD150), a regulator of antigen-driven T-cell responses and macrophage functions, acts as a cellular receptor for measles virus (MV), and its V domain is necessary and sufficient for receptor function. We report here the generation of SLAM knockin mice in which the V domain of mouse SLAM was replaced by that of human SLAM. The chimeric SLAM had an expected distribution and normal function in the knockin mice. Splenocytes from the SLAM knockin mice permitted the in vitro growth of a virulent MV strain but not that of the Edmonston vaccine strain. Unlike in vitro infection, MV could grow only in SLAM knockin mice that also lacked the type I interferon receptor (IFNAR). After intraperitoneal or intranasal inoculation, MV was detected in the spleen and lymph nodes throughout the body but not in the thymus. Notably, the virus appeared first in the mediastinal lymph node after intranasal inoculation. Splenocytes from MV-infected IFNAR(-/-) SLAM knockin mice showed suppression of proliferative responses to concanavalin A. Thus, MV infection of SLAM knockin mice reproduces lymphotropism and immunosuppression in human infection, serving as a useful small animal model for measles.  相似文献   

14.
S Yant  A Hirano    T C Wong 《Journal of virology》1997,71(1):766-770
To investigate the sequence requirements for measles virus (MV)-induced receptor down regulation, we transfected the human CD46 gene into simian cells persistently infected by the Biken strain of MV. Surface expression of CD46 is drastically reduced in these cells. Deletion analysis has shown that the juxtamembrane region of the CD46 cytoplasmic domain is essential for down regulation. Deleting a Tyr-Arg-Tyr-Leu sequence in this region or changing these residues to Ala prevents CD46 down regulation from the infected cell surface. Alanine-scanning mutagenesis has identified two amino acid residues, Tyr and Leu, forming a Tyr-X-X-Leu motif critical for CD46 down regulation. Mutations that prevent CD46 down regulation enhance syncytium formation. These results indicate that CD46 down regulation limits the cytopathic effects in a persistent MV infection and that CD46 down regulation requires a cytoplasmic Tyr-X-X-Leu sequence which resembles known motifs for membrane protein trafficking and receptor signalling.  相似文献   

15.
Measles virus hemagglutinin (MVH) residues potentially responsible for attachment to the wild-type (wt) MV receptor SLAM (CD150) have been identified and localized on the MVH globular head by reference to a revised hypothetical structural model for MVH (www.pepscan.nl/downloads/measlesH.pdb). We show that the mutation of five charged MVH residues which are conserved among morbillivirus H proteins has major effects on both SLAM downregulation and SLAM-dependent fusion. In the three-dimensional surface representation of the structural model, three of these residues (D505, D507, and R533) align the rim on one side of the cavity on the top surface of the MVH globular head and form the basis of a single continuous site that overlaps with the 546-548-549 CD46 binding site. We show that the overlapping sites fall within the footprint of an anti-MVH monoclonal antibody that neutralizes both wt and laboratory-vaccine MV strains and whose epitope contains R533. Our study does not exclude the possibility that Y481 binds CD46 directly but suggests that the N481Y mutation of wt MVH could influence, at a distance, the conformation of the overlapping sites so that affinity to CD46 increases. The relevance of these results to present concepts of MV receptor usage is discussed, and an explanation is proposed as to why morbillivirus attachment proteins are H, whereas those from the other paramyxoviruses are HN (hemagglutinin-neuraminidase).  相似文献   

16.
Measles virus (MV) infection in children harboring human immunodeficiency virus type 1 (HIV-1) is often fatal, even in the presence of neutralizing antibodies; however, the underlying mechanisms are unclear. Therefore, the aim of the present study was to examine the interaction between HIV-1 and wild-type MV (MVwt) or an MV vaccine strain (MVvac) during dual infection. The results showed that the frequencies of MVwt- and MVvac-infected CD4(+) T cells within the resting peripheral blood mononuclear cells (PBMCs) were increased 3- to 4-fold after HIV-1 infection, and this was associated with a marked upregulation of signaling lymphocytic activation molecule (SLAM) expression on CD4(+) T cells but not on CD8(+) T cells. SLAM upregulation was induced by infection with a replication-competent HIV-1 isolate comprising both the X4 and R5 types and to a lesser extent by a pseudotyped HIV-1 infection. Notably, SLAM upregulation was observed in HIV-infected as well as -uninfected CD4(+) T cells and was abrogated by the removal of HLA-DR(+) cells from the PBMC culture. Furthermore, SLAM upregulation did not occur in uninfected PBMCs cultured together with HIV-infected PBMCs in compartments separated by a permeable membrane, indicating that no soluble factors were involved. Rather, CD4(+) T cell activation mediated through direct contact with dendritic cells via leukocyte function-associated molecule 1 (LFA-1)/intercellular adhesion molecule 1 (ICAM-1) and LFA-3/CD2 was critical. Thus, HIV-1 infection induces a high level of SLAM expression on CD4(+) T cells, which may enhance their susceptibility to MV and exacerbate measles in coinfected individuals.  相似文献   

17.
18.
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.  相似文献   

19.
Natural or wild-type (wt) measles virus (MV) infection in vivo which is restricted to humans and certain monkeys represents an enigma in terms of receptor usage. Although wt MV is known to use the protein SLAM (CD150) as a cell receptor, many human tissues, including respiratory epithelium in which the infection initiates, are SLAM negative. These tissues are CD46 positive, but wt MV strains, unlike vaccinal and laboratory MV strains, are not thought to use CD46 as a receptor. We have identified a novel CD46 binding site at residues S548 and F549, in the hemagglutinin (H) protein from a laboratory MV strain, which is also present in wt H proteins. Our results suggest that although wt MV interacts with SLAM with high affinity, it also possesses the capacity to interact with CD46 with low affinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号