首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-linking of high-affinity IgE receptors by multivalent Ag on mast cells (rat basophilic leukemia (RBL)-2H3) induces the phosphorylation of ITAM motifs of an IgE receptor by Src family tyrosine kinase, Lyn. The phosphorylation of IgE receptors is followed by a series of intracellular signals, such as Ca(2+) mobilization, MAPK activation, and degranulation. Therefore, Lyn is a key molecule in the activation of mast cells, but the molecular mechanisms for the activation of Lyn are still unclear. Recently, it is suggested that the localization of Lyn in lipid rafts is critical for its activation in several cell lines, although the precise mechanism is still unknown. In this study, we found that flotillin-1, which is localized in lipid rafts, is involved in the process of Lyn activation. We obtained flotillin-1 knockdown (KD)(2) rat basophilic leukemia (RBL)-2H3 cells, which express a low level of flotillin-1. In the flotillin-1 KD cells, we observed a significant decrease in Ca(2+) mobilization, the phosphorylation of ERKs, tyrosine phosphorylation of the gamma-subunit of IgE receptor, and IgE receptor-mediated degranulation. We also found that flotillin-1 is constitutively associated with Lyn in lipid rafts in RBL-2H3 cells, and Ag stimulation induced the augmentation of flotillin-1 binding to Lyn, resulting in enhancement of kinase activity of Lyn. These results suggest that flotillin-1 is an essential molecule in IgE receptor-mediated mast cell activation, and regulates the kinase activity of Lyn in lipid rafts.  相似文献   

2.
A highly reproducible 2D (two-dimensional) map for the proteome and a pattern of protein phosphorylation of high secretory variant of RBL-2H3 cells (RBL-2H3.1) (a model cell in allergy studies) in resting and treated cells with IgE or IgE+Ag are presented. Major molecular changes were seen in the proteome of 3 h-activated cells with IgE+Ag, especially for proteins of ~17 kDa compared with the control. We have identified 13 proteins on 11 corresponding spots as up-regulated proteins in response to IgE+Ag activation. Also, protein identification on 55 spots with MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) and ESI-MS (electrospray ionization mass spectrometry) resulted in a reliable 2D reference map and an opportunity for the subsequent use of a 1 min-activated cell map for a phosphoproteomics study.  相似文献   

3.
Summary Substance P (SP), a neurotransmitter, may play an important role in neurogenic inflammation. Ginseng has been used extensively in traditional medicine; however, few studies were focused on their anti-allergic effect. Therefore, the effect and mechanism of ginsenoside Rb1 on the SP enhancement of allergic mediators were explored. In this study, SP and dinitrophenyl-bovine serum albumin (DNP-BSA) were used to activate rat basophilic leukemia (RBL)-2H3 cells. The cultured supernatants were assayed for histamine, leukotriene C4(LTC4) and interleulin-4 (IL-4) production. The mitogen-activated protein kinases (MAPKs) signaling pathway was determined by Western blotting analysis. We found that IgE/DNP-BSA, SP, ginsenoside Rb1, or MAPK specific inhibitors had no effect on cell viability and cytotoxicity. SP (30 μM) alone, did not induce histamine and LTC4 release, but it enhanced allergen-induced histamine and LTC4 release. In␣addition, SP significantly induced and enhanced allergen-activated IL-4. Ginsenoside Rb1 dose-dependently inhibited these effects. SP enhanced the allergen-activated ERK pathway in RBL-2H3 cells, and Rb1 effectively inhibited the ERK pathway activation. Although MAPK specific inhibitors suppressed LTC4 and IL-4, only U0126 inhibited the SP enhanced histamine release. These results demonstrate that Rb1 dose-dependently inhibited SP enhanced allergen-induced mediator release and its mechanism was through the inhibition of the ERK pathway.  相似文献   

4.
Sixteen heat-killed bifidobacteria isolated from human intestine and a probiotic strain Lactobacillus GG were tested for their ability to influence IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells in vitro . The bifidobacteria suppressed IgE-mediated degranulation of RBL-2H3 cells by 1.6–56.4% in a strain-dependent manner. Bifidobacteria from healthy infants expressed high inhibitory effects on IgE-mediated degranulation (41–55%), while those from allergic infants varied greatly in their effects against degranulation. Bifidobacteria taxonomically identified as Bifidobacterium bifidum exhibited much stronger inhibitory effects against IgE-mediated degranulation than those taxonomically identified as B. adolescentis ( P < 0.05).These results indicate that the intestinal bifidobacteria might be one of factors influencing IgE-mediated allergic responses.  相似文献   

5.
6.
Signal transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2 (SH2)-like domains as well as a YXXQ motif in its C-terminal region. Our previous study in T cells demonstrated that STAP-2 influences FAK protein levels through recruitment of E3 ubiquitin ligase, Cbl, to FAK. In the present study, we found that Cbl directly controls the protein levels and activity of STAP-2. STAP-2 physically interacted with Cbl through its PH and SH2-like domains. Small-interfering RNA-mediated reduction of endogenous Cbl restored STAP-2 protein levels. In contrast, over-expression of Cbl induced STAP-2 degradation. Importantly, Cbl-mediated regulation of STAP-2 protein levels affected Brk/STAP-2-induced STAT3 activation. These results indicate that Cbl regulates STAP-2 protein levels and Brk/STAP-2-mediated STAT3 activation.  相似文献   

7.
Phosphotyrosine-containing proteins were detected by western blotting of whole cell lysates of purified human neutrophils or rat basophilic leukemia cells (RBL-2H3) using a polyclonal anti-phosphotyrosine antibody. When either cell type was stimulated with the appropriate Fc crosslinking agent, heat-aggregated IgG for the neutrophil or DNP-HSA for the IgE-sensitized RBL-2H3, a rapid increase in the phosphotyrosine content of several proteins was observed. The kinetics and specificity of both responses suggest that Fc receptor crosslinking activates a receptor-associated tyrosine kinase, probably a member of the src family of tyrosine protein kinases. The subsequent tyrosine phosphorylation events are likely to be important in Fc receptor-mediated stimulus-response coupling in inflammatory cells.  相似文献   

8.
Previously, we reported that the isoprenoid pathway inhibitor, lovastatin, blocks the activation by IgE receptor cross-linking of 45Ca2+ influx, 1,4,5-inositol trisphosphate production, secretion, and membrane changes (ruffling, spreading) in intact RBL-2H3 rat basophilic leukemia cells. These results indicated that an isoprenoid pathway intermediate, very likely an isoprenylated protein, is importantly involved in the control of IgE receptor-mediated signal transduction. Here, we show that 20 h of pretreatment with lovastatin also inhibits antigen-induced secretion and membrane responses in streptolysin O-(SLO)-permeabilized cells. However, lovastatin does not inhibit secretion stimulated by the nonhydrolyzable GTP analog, GTP gamma S. Furthermore, the membrane responses to GTP gamma S persist, although in an attenuated form, in lovastatin-treated permeabilized cells. The relative insensitivity of GTP gamma S-induced responses to lovastatin was one of several indications that antigen and GTP gamma S may activate separate pathways leading to transmembrane responses in permeabilized cells. Further experiments showed that the beta-thio derivative of GDP, GDPBAS, inhibits the secretory and membrane responses to GTP gamma S, as expected for a GTP-binding protein-dependent signaling pathway, while having little effect on antigen-induced responses. Conversely, genistein blocks the secretory and membrane responses to antigen, as expected for a tyrosine kinase-dependent pathway, without altering the GTP gamma S-induced responses. From these results, and from additional data from cells treated with tyrphostins and sodium orthovanadate, we propose that IgE receptor-mediated secretion from permeabilized RBL-2H3 cells occurs by a tyrosine kinase-dependent pathway that requires isoprenoid pathway activity for function.We propose further that RBL-2H3 cells contain a separate GTP-binding protein-mediated signaling pathway whose direct activation by GTP gamma S is either independent of isoprenoid pathway activity or depends on the activity of an isoprenylated protein that is not significantly depleted after 20 h of lovastatin treatment.  相似文献   

9.
In rat basophilic leukemia cells (RBL-2H3), a tumor analogue of mast cells, the aggregation of IgE receptors initiates increase in the intracellular concentration of calcium ([Ca2+]i), monitored with the fluorescent Ca probe fura-2, and finally results in histamine secretion. In cell suspensions, however, the fluorescence gradually increases due to leakage and exocytosis of the dye. A superfusion system was developed to overcome these problems and [Ca2+]i was calculated from the ratio of fluorescence intensities at 505 nm of fura-2 excited at 340 and 380 nm. Histamine and beta-N-acetylglucosaminidase in granules are released during exocytosis, and both substances in the superfusates were determined simultaneously. This system is useful for studies on the relationships of cell stimulation, changes in second messengers, and final responses.  相似文献   

10.
Recently, it has been appreciated that cultured mast cells are significant sources of cytokines. However, the role of interkeukin-1 (IL-1) on mast cells and/or basophil degranulation is still unclear. In this report we provide evidence that rat basophilic leukemia cells (RBLC) cultured with a natural inhibitor of IL-1, interleukin-1 receptor antagonist (IL-1RA) (500 ng/ml) for 48 h, strongly inhibited the spontaneous release of serotonin (5HT) and histamine (from 22.50 to 43.49%), compared to untreated cells (control). When IL-1RA-treated and untreated RBLC were stimulated with a secretagogue (anti-IgE), no difference was found in the percent of 5HT and histamine release. Moreover, in another set of experiments using rat peritoneal mast cells (RPMC) treated and untreated with IL-1RA, we found that IL-1RA did not affect the release of 5HT or histamine, even when the secretagogue anti-IgE or compound 48/80 (C48/80) were used. The present studies describe an additional biological activity of IL-1RA, inhibiting histamine and 5HT release from RBLC cultures.Abbreviations IL-1 interleukin-1 - RA receptor antagonist - 5HT serotonin - RBLC rat basophilic leukemia cells - RPMC rat peritoneal mast cells - IgE immunoglobulin E - Fc immunoglobulin E receptor - CPM counts per minute - BSA bovine serum albumin - C48/80 compound 48/80 - TNF tumor necrosis factor  相似文献   

11.
As FAK integrates membrane receptor signalling, yet is also found in the nucleus, we investigated whether nuclear FAK is regulated by membrane receptor activation. Activation of the mast cell FcepsilonRI receptor leads to the release and synthesis of inflammatory mediators as well as increased proliferation and survival. Using RBL-2H3 basophilic leukaemia cells, FAK and the FcepsilonRI receptor were co-localised following cross-linking of IgE with antigen. This also resulted in a significant increase in the nucleus of several N-terminal FAK fragments, the largest of which included the kinase domain but not the focal adhesion targeting domain. This was confirmed using cells that stably expressed recombinant EGFP-FAK. Furthermore, treatment of EGFP-FAK expressing cells with Leptomycin B, an inhibitor of nuclear export, resulted in increased nuclear localisation of EGFP-FAK. Therefore, FAK can shuttle between the nuclear and cytoplasmic compartments and the cellular distribution of N-terminal FAK is regulated by membrane receptor activation.  相似文献   

12.
Some tea polyphenolic compounds including (-)-epigallocatechin gallate (EGCG) have been shown to inhibit histamine release from mast cells through poorly understood mechanisms. By using a mast cell model rat basophilic leukemia (RBL-2H3) cells we explored the mechanism of the inhibition. EGCG inhibited histamine release from RBL-2H3 cells in response to antigen or the calcium-ionophore A23187, while (-)-epicatechin (EC) had little effect. Increased tyrosine phosphorylation of several proteins including approximately 120 kDa proteins occurred in parallel with the secretion induced by either stimulation. EGCG also inhibited tyrosine phosphorylation of the approximately 120-kDa proteins induced by either stimulation, whereas EC did not. The tyrosine kinase-specific inhibitor piceatannol inhibited the secretion and tyrosine phosphorylation of these proteins induced by either stimulation also. Further analysis showed that the focal adhesion kinase pp125(FAK) was one of the approximately 120-kDa proteins. These findings suggest that EGCG prevents histamine release from mast cells mainly by inhibiting tyrosine phosphorylation of proteins including pp125(FAK).  相似文献   

13.
Antigen-mediated exocytosis in intact rat basophilic leukemia (RBL-2H3) cells is associated with substantial hydrolysis of membrane inositol phospholipids and an elevation in concentration of cytosol Ca2+ ([ Ca2+i]). Paradoxically, these two responses are largely dependent on external Ca2+. We report here that cells labeled with myo-[3H]inositol and permeabilized with streptolysin O do release [3H]inositol 1,4,5-trisphosphate upon stimulation with antigen or guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) at low (less than 100 nM) concentrations of free Ca2+. The response, however, is amplified by increasing free Ca2+ to 1 microM. The subsequent conversion of the trisphosphate to inositol 1,3,4,5-tetrakisphosphate is enhanced also by the increase in free Ca2+. Although [3H]inositol 1,4,5-trisphosphate accumulates in greater amounts than is the case in intact cells, [3H]inositol 1,4-bisphosphate is still the major product in permeabilized cells even when the further metabolism of [3H]inositol 1,4,5-trisphosphate is suppressed (by 77%) by the addition of excess (1000 microM) unlabeled inositol 1,4,5-trisphosphate and the phosphatase inhibitor 2,3-bisphosphoglycerate. It would appear that either the activity of the membrane 5-phosphomonoesterase allows virtually instantaneous dephosphorylation of the inositol 1,4,5-trisphosphate under all conditions tested or both phosphatidylinositol 4-monophosphate and the 4,5-bisphosphate are substrates for the activated phospholipase C. The latter alternative is supported by the finding that permeabilized cells, which respond much more vigorously to high (supraoptimal) concentrations of antigen than do intact RBL-2H3 cells, produce substantial amounts of [3H]inositol 1,4-bisphosphate before any detectable increase in levels of [3H]inositol 1,4,5-trisphosphate.  相似文献   

14.
To detect low levels of histamine, we developed a histamine microsensor using recombinant histamine oxidase. Histamine oxidase with a histidine tag was readily purified using a histidine affinity column. The enzyme showed higher catalytic activity on histamine than diamines (e.g., putrescine and cadaverine) or N(tau)-methylhistamine. The sensor had three carbon film electrodes modified with osmium-polyvinylpyridine-based gel containing horseradish peroxidase, histamine oxidase, and Ag. When a standard solution of histamine was aspirated at a flow rate of 2 microl/min, the detected current was proportional to the histamine concentration and the lower detection limit was 11.3 nM. When rat basophilic leukemia cells (1 x 10(6)) were stimulated by various concentrations of antigen (2, 20, and 200 ng/ml), the histamine concentrations were 0.32, 2.7, and 1.3 microM, respectively, and 20 ng/ml of antigen was found to be the optimal concentration for the antigen-antibody reaction. In contrast, when thapsigargin, an inhibitor of Ca-ATPase in the endoplasmic reticulum, was added (50, 100, and 500 nM), the detected current increased with thapsigargin concentrations and the measured histamine concentrations were 28 nM, 1.3 microM, and 2.7 microM, respectively. These results indicate that the microsensor is useful for the analysis of histamine release from mast cells.  相似文献   

15.
Gh protein is an heterodimer made up of two subunits alpha and beta. Different from the traditional monomeric and heterotrimeric G proteins, Ghalpha subunit exhibits both GTPase and transglutaminase activities whereas Ghbeta was identified as calreticulin. Activation of Gh by G protein-coupled receptors (GPCR) turns off transglutaminase activity and shifts Ghalpha to signal transducer. Thereafter, Ghalpha regulates downstream effectors. All these aspects are discussed in the present review, in order to shed new light on this atypical G protein.  相似文献   

16.
The Rab family small G proteins regulate discrete steps in vesicular transport pathways. Recent studies indicate that one member of the Rab family, Rab27A, regulates the transport of lysosome-related organelles, such as melanosome distribution in melanocytes, lytic granule release in cytotoxic T cells, and dense granule release in platelets. Here, we have examined the involvement of Rab27A in the exocytic transport of another lysosome-related organelle, the basophilic secretory granule, in basophils. We have found that Rab27A locates on basophilic secretory granules containing histamine in rat basophilic leukemia (RBL) 2H3 cells. In addition, exogenous expression of dominant active Rab27A reduces antigen-induced histamine release from the cells. We have moreover identified Munc13-4 as a Rab27A target using a CytoTrap system and found that exogenous expression of Munc13-4 affects antigen-induced histamine release from RBL-2H3 cells. These results demonstrate that Rab27A plays a crucial role in antigen-induced histamine release from RBL-2H3 cells.  相似文献   

17.
Polymethoxy flavones (PMFs) are present in fruit tissues of Citrus species. It has been reported that flavonoids isolated from several Citrus have been shown to suppress the degranulation as inferred by histamine release in rat basophilic leukemia RBL-2H3 cells. In this study, we examined the effect of PMFs (PMF-1: 6,7,4',5'-tetramethoxy-5-monohydroxyflavone, PMF-2: 5,6,8,3',6'-pentamethoxy flavone, PMF-3: 5,6,7,3',4',5'-hexamethoxy flavone) on the degranulation in RBL-2H3 cells. All the PMFs suppressed the degranulation from Ag-stimulated RBL-2H3 cells. Interestingly, PMF-combination (PMF-1+PMF-2; PMF-1+PMF-3) treatment enhanced the inhibition of degranulation compared with PMF-single treatment. In order to clarify the inhibitory mechanism of degranulation by PMFs, we examined the activation of intracellular signaling molecules such as Lyn, Syk, and PLCgammas. All the PMFs significantly suppressed the activation of Syk and PLCgammas. In Ag-mediated activation of Fc epsilonRI on mast cells, three major subfamilies of mitogen-activated protein kinases, especially ERK44/42, were activated. These PMFs reduced the level of phospho-ERKs. The intracellular free Ca(2+) concentration ([Ca(2+)]i) was elevated by Fc epsilonRI activation, and PMF treatment reduced the elevation of [Ca(2+)]i by suppressing Ca(2+) influx. Thus, it was suggested that the suppression of Ag-stimulated degranulation by these PMFs mainly is due to the Syk/PLCgammas/PKC pathway and Ca(2+) influx. Furthermore, to be noted in the PMF-combination treatment, inactivation of Syk was enhanced compared with PMF-single treatment. But the inhibitory effect of degranulation by PMF-combination treatment was not associated with the suppression of Ca(2+) influx.  相似文献   

18.
RBL-2H3 cells have been widely used to study histamine release in vitro. It was previously shown that these cells undergo striking morphological changes after IgE-mediated secretion. The present study was undertaken to examine if the morphological changes were dependent on activation of the Fc epsilon receptor. Therefore, the cells were stimulated to release histamine by two different mechanisms: activation of the Fc epsilon receptor by antigen and treatment with the calcium ionophore A23187. Cell surface and cytoskeletal changes were examined by fluorescence microscopy and scanning electron microscopy after either IgE- or ionophore-mediated histamine release. After exposure of the cells to either secretagogue, the cells spread over the surface of the culture dish and underwent rearrangement of the cytoskeleton. In addition, scanning electron microscopy revealed that deep ruffles developed on the surface of the cells undergoing IgE-mediated release. The surface changes were not as pronounced with the ionophore. The distribution of the cytoskeletal elements was examined by immunofluorescence using FITC-phalloidin and antibodies against vimentin and tubulin. In unstimulated cells actin was localized at the cell periphery, just under the plasma membrane. In the stimulated cells it was associated with the cell periphery and concentrated in the surface ruffles. As the stimulated cells spread, intermediate filaments and microtubules became distributed throughout the cell body, but there was no obvious association with the membrane ruffles. These morphological changes were dependent on the presence of extracellular calcium and on the concentration of ionophore or antigen, and were also correlated with the amount of histamine released. Additionally, IgE-mediated stimulation led to increased uptake of the soluble-phase tracer Lucifer yellow, whereas stimulation with the ionophore A23187 showed no increase in Lucifer yellow internalization. Ionophore A23187 produced changes similar but not identical to those seen in the RBL-2H3 cells after IgE-mediated histamine release. The differences may be owing to the involvement of the Fc epsilon receptor in IgE-mediated secretion.  相似文献   

19.
Ag stimulation of rat basophilic leukemia (RBL-2H3) cells results in hydrolysis of inositol phospholipids, a transient increase in concentration of cytosol Ca2+ [( Ca2+]i), a gradual increase in cytosolic pH (pHi) and the activation of protein kinase C. To determine whether all these changes serve as signals for secretion, studies were conducted with cells permeabilized with streptolysin O in which pHi and [Ca2+]i could be varied independently of each other and enzyme activities could be manipulated. At resting pHi (approximately 7.0) and [Ca2+]i (0.1 microM), the permeabilized cells showed little secretory response to Ag. At resting pHi, elevated levels of Ca2+ (0.33 microM) were required for maximal secretory response to Ag. At a pHi of 7.4, however, 0.1 microM [Ca2+]i was sufficient to sustain near maximal responses to Ag. Therefore, a small increase of [Ca2+]i to 0.33 microM was required to initiate secretion, but once the pHi was elevated secretion could be sustained at near basal levels of [Ca2+]i. Since elevating the [Ca2+]i and pHi, by themselves promoted little secretion, another potentiating signal must have been generated by antigen stimulation. This signal was possibly transduced via hydrolysis of inositol phospholipids and protein kinase C. Even with an elevated [Ca2+]i (0.33 microM) the hydrolysis of the phospholipids and secretion stimulated by Ag were inhibited by guanosine 5'(2-O-thio)diphosphate and neomycin. Furthermore, both protein-kinase C and the secretory response to Ag were lost after permeabilized cells were washed but both were retained if cells were exposed to PMA before permeabilization.  相似文献   

20.
Recently, we demonstrated that aggregation of the high affinity IgE receptor in rat basophilic leukemia (RBL-2H3) cells results in rapid tyrosine phosphorylation of a 72-kDa protein (pp72). Here we investigated the relationship of pp72 phosphorylation to guanine nucleotide-binding protein (G protein) activation and phosphatidylinositol hydrolysis. The activation of G proteins by NaF in intact cells or by guanosine 5'-O-(3-thiotriphosphate) in streptolysin O-permeabilized cells induced both phosphatidylinositol hydrolysis and histamine release without tyrosine phosphorylation of pp72. Similarly, in RBL-2H3 cells expressing the G protein-coupled muscarinic acetylcholine receptor, carbachol activated phospholipase C and induced secretion without concomitant pp72 phosphorylation. Therefore, pp72 phosphorylation was not induced by G protein activation or as a consequence of phosphatidylinositol hydrolysis. To investigate whether pp72 tyrosine phosphorylation precedes the activation of phospholipase C, we studied the effect of the tyrosine kinase inhibitor genistein. Preincubation of cells with genistein decreased, in parallel, antigen-induced tyrosine phosphorylation of pp72 (IC50 = 34 micrograms/ml) and histamine release (IC50 = 31 micrograms/ml). However, genistein at concentrations of up to 60 micrograms/ml did not inhibit phosphatidylinositol hydrolysis nor did it change the amount of the secondary messenger inositol (1,4,5)-triphosphate. Previous observations showed that there was no pp72 tyrosine phosphorylation after activation of protein kinase C or after an increase in intracellular calcium. Taken together, these results suggest that pp72 tyrosine phosphorylation represents a distinct, independent signaling pathway induced specifically by aggregation of the Fc epsilon RI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号