首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Velocity and pressure fields, streamlines and wall shear stress distributions were numerically obtained for two-dimensional, steady and pulsatile flow in a carotid artery segment. Distinct regions of reverse flow near the bifurcation and wavy flow patterns in the branching channels were observed during portions of the pulse. These phenomena disappear at the end of the systolic phase of the cardiac cycle. A previously validated plaque formation model predicts that plaque sites and the local extent of atherosclerotic lesions are similar for those present on human angiograms.  相似文献   

2.
The pulsatile flow in an anatomically realistic compliant human carotid bifurcation was simulated numerically. Pressure and mass flow waveforms in the carotid arteries were obtained from an individual subject using non-invasive techniques. The geometry of the computational model was reconstructed from magnetic resonance angiograms. Maps of time-average wall shear stress, contours of velocity in the flow field as well as wall movement and tensile stress on the arterial wall are all presented. Inconsistent with previous findings from idealised geometry models, flow in the carotid sinus is dominated by a strong helical flow accompanied by a single secondary vortex motion. This type of flow is induced primarily by the asymmetry and curvature of the in vivo geometry. Flow simulations have been carried out under the rigid wall assumption and for the compliant wall, respectively. Comparison of the results demonstrates the quantitative influence of the vessel wall motion. Generally there is a reduction in the magnitude of wall shear stress, with its degree depending on location and phase of the cardiac cycle. The region of slow or reversed flow was greater, in both spatial and temporal terms in the compliant model, but the global characteristics of the flow and stress patterns remain unchanged. The analysis of mechanical stresses on the vessel surface shows a complicated stress field. Stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb. These are also regions of low wall shear stress. The comparison of computed and measured wall movement generally shows good agreement.  相似文献   

3.
4.
The insertion of an endovascular prosthesis is known to have a thrombogenic effect that is also a consequence of the interaction between the flowing blood and the stented arterial segment; in fact the prosthesis induces a compliance mismatch and a possible small expansion along the vessel that eventually gives rise to an anomalous distribution of wall shear stresses. The fluid dynamics inside a rectilinear elastic vessel with compliance and section variation is studied here numerically. A recently introduced perturbative approach is employed to model the interaction between the fluid and the elastic tissue; this approximate technique is first validated by comparison with a complete solution within a simple one-dimensional model of the same system. Then it is applied to an axisymmetric model in order to evaluate the flow dynamics and the distribution of wall shear stress in the stented vessel. Compliance mismatch is shown to produce more intense negative wall shear stresses in the stented segment while rapid variations of wall shear stress are found at the stent ends. These effects are enhanced when the prosthesis is accompanied by a small increase of the vessel lumen.  相似文献   

5.
Concentration polarization of atherogenic lipids in the arterial system   总被引:2,自引:0,他引:2  
Nomenclature c, Normalized LDL concentration (C*/C0); C0, incoming (bulk) LDL concentration (gr/cm3); Cw, LDL concentration on the luminal surface (gr/cm3); ,wC time average value of LDL concentration on the luminal surface (gr/cm3); D, diffusion coef-ficient of LDL (cm2/s); Q, blood flow rate (mL/s); 0R, average internal radius of the artery (cm); Re, Reynolds number (002/Run); Sc, Schmidt number (/Dn); t, normalized time (00*/tuR); u, normalized axial velocity (0*/uu); 0u, time a…  相似文献   

6.
Considering transient two-dimensional laminar flow in a diseased carotid artery segment with realistic inlet and outflow conditions, detailed velocity profiles, pressure fields, wall shear stress distributions and coupled, localized plaque formations have been simulated. The type of outflow boundary condition influences to a certain degree the extent of plaque build-up, which in turn reduces "disturbed flow" phenomena such as flow separations, recirculation zones, and wavy flow patterns in the artery branches during portions of the pulse. Based on computer experiments varying key geometric factors, a plaque-mitigating design of a carotid artery bifurcation has been proposed. Elimination of the carotid bulb, a smaller bifurcation angle, lower area ratios, and smooth wall curvatures generated a design with favorable hemodynamics parameters, leading to reduced plaque build-up by factors of 10 and 2 in the internal carotid and in the external carotid, respectively.  相似文献   

7.
Numerical analysis of flow phenomena and wall shear stresses in the human carotid artery bifurcation has been carried out using a three-dimensional geometrical model. The primary aim of this study is the detailed discussion of non-Newtonian flow velocity and wall shear stress during the pulse cycle. A comparison of non-Newtonian and Newtonian results is also presented. The applied non-Newtonian behavior of blood is based on measured dynamic viscosity. In the foreground of discussion are the flow characteristics in the carotid sinus. The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase. The changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle. At the outer wall of the sinus at maximum diameter level the shear stress ranges from -1.92 N/m2 to 1.22 N/m2 with a time-averaged value of 0.04 N/m2. At the inner wall of the sinus at maximum diameter level the shear stress range is from 1.16 N/m2 to 4.18 N/m2 with a mean of 1.97 N/m2. The comparison of non-Newtonian and Newtonian results indicates unchanged flow phenomena and rather minor differences in the basic flow characteristics.  相似文献   

8.
In this study fluid dynamic variables are analysed numerically in different human carotid artery bifurcation models in order to clarify the geometric factor in carotid bifurcation atherogenesis. The geometric variations describe healthy human carotid bifurcation anatomy and concern the shape of the carotid sinus and the angle between the branches. The flow conditions remain unchanged. The governing Navier-Stokes equations describing incompressible, pulsatile, three-dimensional viscous flow are approximated using a pressure correction finite element procedure which has been developed for time-consuming, three-dimensional, time-dependent viscous flow problems. The study concentrates on flow velocity, on detailed analysis of flow separation and flow recirculation, and on wall shear stress distribution. The results show that the extension and the location of the recirculation zone in the sinus as well as the duration of separated flow during the pulse cycle are affected by the geometrical variations. In view of the significance of the reversed flow zones and of the accompanied low shear regions in atherogenesis the geometry-dependent flow separation characteristics in the sinus is of substantial interest.  相似文献   

9.
The transport of atherogenic lipids (LDL) in a straight segment of an artery with a semi-permeable wall was simulated numerically. The numerical analysis predicted that a mass transport phenomenon called ’concentration polarization’ of LDL might occur in the arterial system. Under normal physiological flow conditions, the luminal surface LDL concentration was 5%–14% greater than the bulk concentration in a straight segment of an artery. The luminal surface LDL concentration at the arterial wall was flow-dependent, varying linearly with the filtration rate across the arterial wall and inversely with wall shear rate. At low wall shear rate, the luminal surface LDL concentration was very sensitive to changes in flow conditions, decreasing sharply as wall shear rate increased. In order to verify the numerical analysis, the luminal surface concentration of bovine serum albumin (as a tracer macromolecule) in the canine carotid artery was measured in vitro by directly taking liquid samples from the luminal surface of the artery. The experimental result was in very good agreement with the numerical analysis. The authors believe that the mass transport phenomenon of ‘concentration polarization’ may indeed exist in the human circulation and play an important role in the localization of atherosclerosis.  相似文献   

10.
Flow and stress patterns in human carotid artery bifurcation models, which differ in the bifurcation angle, are analysed numerically under physiologically relevant flow conditions. The governing Navier-Stokes equations describing pulsatile, three-dimensional flow of an incompressible non-Newtonian fluid are approximated using a pressure correction finite element method, which has been developed recently. The non-Newtonian behaviour of blood is modelled using Casson's relation, based on measured dynamic viscosity. The study concentrates on flow and stress characteristics in the carotid sinus. The results show that the complex flow in the sinus is affected by the angle variation. The magnitude of reversed flow, the extension of the recirculation zone in the outer sinus region and the duration of flow separation during the pulse cycle as well as the resulting wall shear stress are clearly different in the small angle and in the large angle bifurcation. The haemodynamic phenomena, which are important in atherogenesis, are more pronounced in the large angle bifurcation.  相似文献   

11.
The structure of pulsatile blood flow and wall shear stress in a 90° T-bifurcation model is analysed numerically. The nonlinear Navier-Stokes equations for time-dependent incompressible Newtonian fluid flow are approximated using a newly developed pressure correction, finite element method. The wall shear stress is calculated from the finite element velocity field. The investigation shows viscous flow phenomena such as flow separation and stagnation and the distribution of high and low wall shear stress during the pulse cycle. Furthermore, the effect of a sharp corner the bifurcation edge on the wall shear stress is analysed. Detailed local flow investigation is required to examine fluid dynamic contribution to the development of arterial diseases such as atherosclerosis and thrombosis.  相似文献   

12.
The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery (ICA) during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100-300Hz. Instantaneous wall shear stress (WSS) within the stenosis was relatively high during systole ( approximately 25-45Pa) compared to that in a healthy carotid. In addition, high spatial gradients of WSS were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the ICA. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery.  相似文献   

13.
The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier–Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.  相似文献   

14.
Symmetrical 30-60% stenosis in a common carotid artery under unsteady flow condition for Newtonian and six non-Newtonian viscosity models are investigated numerically. Results show power-law model produces higher deviations, in terms of velocity and wall shear stress in comparison with other models while generalized power-law and modified-Casson models are more prone to Newtonian state. Comparing separation length of recirculation region at different critical points of cardiac cycle confirms the necessity of considering blood flow in unsteady mode. Increasing stenosis intensity causes flow patterns more disturbed downstream of the stenosis and WSS appear to develop remarkably at the stenosis throat.  相似文献   

15.
Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.  相似文献   

16.
The site opposite an end-to-side anastomosis, resulting from femoral bypass surgery, and the carotid sinus are two regions well known to be prone to fibrous intimal hyperplasia or atherogenesis, respectively. The blood flow at these two sites features a stagnation point, which oscillates in strength and position. Mathematical models are used to determine some of the features of such a flow; in particular, the mean wall shear stress is calculated. The positional oscillations cause a significant change in the distribution and magnitude of the mean wall shear stress from that of the well-studied case of a stagnation point that oscillates only in strength. It is therefore proposed that the recorded effect of time dependence in the flow upon atherogenesis could still be a result of the distribution of the mean and not the time-varying components of the wall shear stress.  相似文献   

17.
In the present study a two-dimensional finite element model for incompressible Newtonian flow is applicated to the modelling of carotid artery flow. In earlier studies, the numerical model was validated experimentally for several flow configurations. In general the pulsatile flow is characterized by reversed flow regions at the non-divider side walls of both the internal and external carotid arteries. The unsteadiness of the flow is associated with rather complex spatial and temporal velocity distributions and leads to temporal variations of the location and length of the reversed flow regions. As a consequence, pronounced spatial and temporal variations in the wall shear stresses are found. At the non-divider side walls, wall shear stresses are relatively low and exhibits an oscillatory behaviour in space and time. At the divider side walls, wall shear stresses are relatively high and approximately follow the flow rate distribution in time. The aim of this study is not only to present two-dimensional calculations but also to compare the calculated two-dimensional velocity profiles with those from three-dimensional experiments. It is observed that in the common carotid artery and in the proximal parts of the internal and external carotid arteries, the two-dimensional numerical model provides valuable information with respect to the three-dimensional configuration. In the more distal parts of especially the internal carotid artery, deviations are found between the two-dimensional numerical and three-dimensional experimental model. These deviations can mainly be attributed to the neglect of the secondary velocity distribution in the two-dimensional model. In the two-dimensional numerical model the influence of a minor stenosis in the internal carotid artery is hardly distinguishable from a minor geometrical variation without stenosis. Full three-dimensional analyses of the influence of minor stenoses are needed to prove numerically whether in-vivo measurements of the axial velocity distribution are useful in the detection of minor stenoses.  相似文献   

18.
颈动脉血管壁切应力的分析   总被引:1,自引:0,他引:1  
动脉中管壁的脉动低切应力在动脉粥样硬化形成中起始动和主要的决定作用。本文比较了几种计算血管壁切应力的方法,认为采用有约束的弹性管模型计算获得的动脉壁切应力更适合于临床应用。根据检测得到的正常人和动脉硬化性脑血管病患者的颈动脉血流速度、血管管径等数据,计算两者的颈动脉壁面切应力。研究发现动脉硬化性脑血管病患者的壁面切应力比正常人显著减小。这表明,颈动脉的壁面切应力可以作为动脉硬化性脑血管疾病的早期诊断的重要参考指标。  相似文献   

19.
Blood flow dynamics in the human right coronary artery have not been adequately quantified despite the clinical significance of coronary atherosclerosis. In this study, a technique was developed to construct a rigid flow model from a cast of a human right coronary artery. A laser photochromic method was used to characterize the velocity and wall shear stress patterns. The flow conditions include steady flow at Reynolds numbers of 500 and 1000 as well as unsteady flow with Womersley parameter and peak Reynolds number of 1.82 and 750, respectively. Characterization of the three-dimensional geometry of the artery revealed that the largest spatial variation in curvature occurred within the almost branch-free proximal region, with the greatest curvature existing along the acute margin of the heart. In the proximal segment, high shear stresses were observed on the outer wall and lower, but not negative, stresses along the inner wall. Low shear stress on the inner wall may be related to the preferential localization of atherosclerosis in the proximal segment of the right coronary artery. However, it is possible that the large difference between the outer and inner wall shear stresses may also be involved.  相似文献   

20.
A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号