首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response to different dietary conditions of the enzymes responsible for the transformation of mevalonic acid to isopentenyl pyrophosphate has been studied for the first time in the small bowel of the chick to elucidate the role of these enzymes in the regulation of intestinal cholesterogenesis. Feeding a 2% cholesterol diet from hatching resulted in a small but significant inhibition of mevalonate-5-pyrophosphate decarboxylase, while mevalonate kinase and mevalonate-5-phosphate kinase remained unaltered. Similar results were obtained for the three enzymes when 13-day-old chicks fed a standard fat-free diet were switched to a 5% cholesterol diet. Starved chicks exhibited lower intestinal decarboxylase activity than chicks fed a standard diet, while refeeding resulted in levels of activity similar or slightly greater than controls. None of the enzymes effecting the conversion of mevalonate to isopentenyl pyrophosphate in the small intestine presented diurnal variations. Results obtained suggest that mevalonate-5-pyrophosphate decarboxylase may play a significant role in the regulation of cholesterol synthesis in the small intestine.  相似文献   

2.
Both in vivo and in vitro incorporation of mevalonic acid into nonsaponifiable lipids by 17-day-old chick liver and kidney did not show diurnal rhythm. Using 14CO2 production from MVA as an index of the shunt pathway not leading to sterols, we have demonstrated for the first time that there is no diurnal rhythm in this pathway. No significant differences were found in the specific activities of mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase from chick liver and kidney throughout a period of 24 hr, using [1-14C]mevalonate as substrate. The absence of diurnal rhythm in the decarboxylase activity was corroborated by further experiments carried out using [2-14C]mevalonate-5-pyrophosphate as specific substrate of this enzyme.  相似文献   

3.
The effect of clofibrate on the activity of the three mevalonate-activating enzymes has been studied for the first time in brain by reactions carried out using [2-14C] mevalonic acid as substrate and 105,000g supernatants from 14-day-old chick brain. Mevalonate-5-pyrophosphate decarboxylase was clearly inhibited, while mevalonate kinase and mevalonate-5-phosphate kinase were not significantly affected. The effect of clofibrate on decarboxylase activity was progressive with increasing concentrations (1.25–5.00 mM) of the inhibitor. A transient inhibition and a subsequent activation as a function of clofibrate concentration seemed to occur for mevalonate kinase. Direct measurements of decarboxylase activity utilizing [2-14C] pyrophosphomevalonate as the specific substrate of this enzyme corroborated these results. Kinetic studies showed that clofibrate competes with the substrate ATP.  相似文献   

4.
Phosphorylation and decarboxylation of mevalonate in chick liver and brain was investigated during early post hatching stages of development. In chick liver, both mevalonate kinase and mevalonate-5-phosphate kinase increased their activity from day 5 of age while pyrophosphate decarboxylase activity remained low during the first days after hatching, increased sharply up to day 9 of age, and remained practically unchanged thereafter. The developmental pattern obtained in brain shows a slight decrease in the phosphorylation and decarboxylation of mevalonate after the first week of postnatal development. Further studies were performed using the specific substrate of mevalonate-5-pyrophosphate decarboxylase, corroborating the results obtained using mevalonate as substrate. Changes in hepatic decarboxylase were more pronounced than those observed in mevalonate-phosphorylating enzymes, thus suggesting an important role for decarboxylase in the control of cholesterogenesis during postnatal development.  相似文献   

5.
Chicken liver mevalonate-5-pyrophosphate decarboxylase (ATP:5-diphosphomevalonate carboxy-lyase (dehydrating), EC 4.1.1.33.) is inactivated by phenylglyoxal in triethanolamine buffer at pH 8.15. The reaction follows pseudo-first-order kinetics with a second-order rate constant of 108 M-1 min-1. Appropriate treatment of the kinetic data for the inactivation reaction indicates that the reaction of a single phenylglyoxal molecule per active unit of the enzyme is enough to completely inactivate the protein. The partially inactivated enzyme shows unaltered Km but decreased V as compared to native mevalonate-5-pyrophosphate decarboxylase. The dissociation constants for the enzyme-substrate complexes were estimated from inactivation reactions at different concentrations of substrates. From the data it is concluded that the modified amino acid is important for the binding of both substrates.  相似文献   

6.
Isoprenoid biosynthesis in bacteria: Two different pathways?   总被引:4,自引:0,他引:4  
Abstract The biosynthesis of isopentenylpyrophosphate, a central intermediate of isoprenoid formation, was investigated in six different bacterial organisms. Cell-free extracts of Myxococcus fulvus, Staphylococcus carnosus, Lactobacillus plantarum and Halobacterium cutirubrum converted [14C]acetyl-CoA or [14C]hydroxymethylglutaryl-CoA to [14C]mevalonic acid. Furthermore, [14C]mevalonic acid, [14C]mevalonate-5-phosphate and [14C]mevalonate-5-pyrophosphate were metabolized to [14C]isopentenylpyrophosphate in bacteria. In contrast, no intermediates of this reaction sequence could be detected using cell-free extracts of Zymomonas mobilis and Escherichia coli . These results indicate that at least two different pathways for the biosynthesis of isopentenylpyrophosphate are present in bacteria.  相似文献   

7.
3-Hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase activities have been determined in brain, liver, intestine and kidneys from 19-day-old chick embryo. Levels of brain reductase and decarboxylase were clearly higher than those found in the other tissues assayed. However, only small differences were observed in the activity of both kinases among the different tissues. Mevalonate metabolism by sterol and nonsterol pathways has been investigated in chick embryo at the same developmental stage. Mevalonate incorporation into total nonsaponifiable lipids was maximal in liver, followed by intestine, brain and kidneys. The shunt pathway of mevalonate not leading to sterols was negligible in both brain and liver, while a clear CO2 production was observed in intestine and kidneys. Sterols running in TLC as lanosterol and cholesterol were the major sterols formed from mevalonate by brain and kidney slices, while squalene and squalene oxide(s) were found to be mainly synthesized by liver slices. Minor differences in the percentage of different sterols were observed in chick embryo intestine. The importance of free and esterified cholesterol accumulation in the different tissues on the inhibition of cholesterogenic activity is discussed.  相似文献   

8.
The activity of mevalonate-5-pyrophosphate (MVAPP) decarboxylase was assayed in the extracts of green leaves of lemon grass. The enzyme was found to be exclusively cytosolic, had a pH optimum of 6.0 and had a specific requirement for ATP; Mg2+ was required and Mn2+ could replace it partially. The phenolic compounds, p-coumaric acid, protocatechuic acid, ferulic acid and phloroglucinol carboxylic acid inhibited the activity.  相似文献   

9.
Mevalonate-5-pyrophosphate decarboxylase [ATP:5-diphosphomevalonate carboxy-lyase (dehydrating), EC 4.1.1.33] has been purified 5800 times from chicken liver and obtained in a stable and highly purified form. The protein is a dimer of molecular weight 85400 +/- 1941, and its subunits were not resolved by gel electrophoresis in denaturing conditions. The purified enzyme does not require the presence of SH-containing reagents for either activity or stability. The enzyme shows a high specificity for adenosine 5'-triphosphate (ATP) and requires for activity a divalent metal cation, Mg2+ being most effective. The optimum pH for the enzyme ranges from 4.0 to 6.5. Inhibitory effects for the enzyme activity were detected by citrate, phthalate, and phosphate. The isoelectric point, as determined by column chromatofocusing, is 4.8. The kinetics are hyperbolic for both substrates, showing a sequential mechanism; true Km values of 0.0141 mM and 0.504 mM have been obtained for mevalonate-5-pyrophosphate and ATP, respectively.  相似文献   

10.
During the growth cycle of normal fibroblasts and of fibroblasts deficient in glucose-6-phosphate dehydrogenase activity, the concentration of 5-phosphoribosyl-1-pyrophosphate and of Pi, as well as the activity of 5-phosphoribosyl-1-pyrophosphate synthetase, decreased to stable values in confluent cultures. A high degree of correlation (0.89 and 0.91 for two normal and 0.69 for one glucose-6-phosphate dehydrogenase-deficient cell strain, respectively) was shown between intracellular Pi and 5-phosphoribosyl-1-pyrophosphate concentrations under varying culture and incubation conditions. 5-phosphoribosyl-1-pyrophosphate concentrations were elevated in normal fibroblasts incubated with methylene blue only if intracellular Pi levels were high. Neither methylene blue nor 6-aminonicotinamide, singly, affected intracellular Pi concentrations. However, when normal cells were pretreated with 6-aminonicotinamide and then with methylene blue, intracellular Pi decreased, 5-phosphoribosyl-1-pyrophosphate was depleted, and its rate of generation decreased. Under similar conditions, glucose-6-phosphate dehydrogenase-deficient fibroblasts maintained unaltered Pi levels, and 5-phosphoribosyl-1-pyrophosphate concentration and generation were slightly increased. The decrease in intracellular Pi in normal cells after the combined treatment was commensurate with an accumulation of 6-phosphogluconate, which did not take place in mutant cells. The changes in 5-phosphoribosyl-1-pyrophosphate synthesis, whether due to the stage of growth or various experimental manipulations, were always concordant with changes in intracellular Pi level. The regulatory role of Pi is consistent with the known enzymic properties of 5-phosphoribosyl-1-pyrophosphate synthetase.  相似文献   

11.
The pH profiles of crystalline quinolinate phosphoribosyltransferase (EC 2.4.2.19) activities from hog kidney and hog liver were found to vary according to 5-phosphoribosyl-1-pyrophosphate concentration. Both the kidney and liver enzyme activities were inhibited by 5-phosphoribosyl-1-pyrophosphate at an alkaline pH and physiological pH (pH 7.4) but not at an acidic pH. The inhibition by 5-phosphoribosyl-1-pyrophosphate was competitive for quinolinic acid. In the presence of 30% glycerol, both the kidney and liver enzyme activities were inhibited by 5-phosphoribosyl-1-pyrophosphate, even at an acidic pH.  相似文献   

12.
Spontaneous decomposition of 5-phosphoribosyl 1-pyrophosphate at pH 5.5 was established to occur as follows: 5-Phosphoribosyl 1-pyrophosphate----5-phosphoribosyl 1,2-(cyclic)phosphate----ribose 1-phosphate----ribose Enzymic degradation of 5-phosphoribosyl 1-pyrophosphate by alkaline phosphatase from calf intestine and by acid phosphatases from potato and Aspergillus niger was found to proceed according to this pathway within the pH range 2.5-7.4 with accumulation of ribose 1-phosphate. In the case of alkaline phosphatase, Mg2+ ions inhibit the pyrophosphorolysis of 5-phosphoribosyl 1-pyrophosphate and stimulate the hydrolysis of ribose 1-phosphate.  相似文献   

13.
3-Hydroxy-3-methylglutaryl-CoA reductase, mevalonate-5-pyrophosphate decarboxylase and acyl-CoA: cholesterol acyltransferase activities were assayed in mucosal scrapings and isolated enterocytes from chick duodenum, jejunum and ileum. Maximal reductase and decarboxylase specific activities were found in ileum and jejunum, while ileum exhibited the minimal acyltransferase specific activity. The isolated epithelial cells showed levels of reductase and acyltransferase specific activities higher than those found in mucosa scrapings, probably due to the contact of these microsomal proteins with proteolytic enzymes during homogenization of the mucosa. However, no protecting effect of the trypsin inhibitor (2mg/ml) could be observed on reductase activity in mucosa scrapings. The cytosolic location of decarboxylase may account for the similar levels of specific activities found in mucosa scrapings and isolated enterocytes.  相似文献   

14.
Mevalonate-5-(2-thiodiphosphate), a substrate analog for diphosphomevalonate decarboxylase, has been enzymatically prepared from mevalonate-5-phosphate and adenosine-5'-0-(3-thiotriphosphate) using phosphomevalonate kinase as a catalyst, in a 37% yield. The substrate properties of the synthesized compound are compared to those of the normal substrate of the enzyme.  相似文献   

15.
Cell-free systems were prepared from fresh, cut and black rot-diseasedtissues of sweet potato roots. When incubated in the presenceof mevalonate, all these systems were capable of synthesizing5-phosphomevalonate, mevalonate-5-pyrophosphate and isopentenylpyrophosphate. The time courses for the appearance of the 14C-labeledmetabolites suggested the following order of synthesis: mevalonate 5-phosphomevalonate mevalonate-5-pyrophosphate isopentenylpyrophosphate. It was also shown; on prolonged incubation, thatisopentenyl pyrophosphate was converted slowly to isopentenylmonophosphate. The activity for synthesis of isopentenyl pyrophosphatefrom mevalonate was higher in diseased tissue than in cut andhealthy tissues. 1This paper constitutes Part 78 of the Phytopathological Chemistryof Sweet Potato with Black Rot and Injury. (Received June 18, 1969; )  相似文献   

16.
1. Mevalonate pyrophosphate decarboxylase of rat liver is inhibited by various phenyl and phenolic acids. 2. Some of the phenyl and phenolic acids also inhibited mevalonate phosphate kinase. 3. Compounds with the phenyl-vinyl structure were more effective. 4. Kinetic studies showed that some of the phenolic acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-pyrophosphate, whereas others inhibit umcompetitively. 5. Dihydroxyphenyl and trihydroxyphenyl compounds and p-chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. 6. Of the three mevalonate-metabolizing enzymes, mevalonate pyrophosphate decarboxylase has the lowest specific activity and is probably the rate-determining step in this part of the pathway.  相似文献   

17.
1. It has been reported that the rate of purine nucleotide synthesis de novo in the immature rat uterus is doubled at 6h after administration of oestradiol-17beta. The present work confirms an increased incorporation of glycine and adenine into uterine nucleotides between 2 and 6h after hormone treatment and investigates the mechanism of this response. 2. Activation of regulatory enzymes is unlikely to promote increased nucleotide synthesis: the activities of 5-phosphoribosyl 1-pyrophosphate amidotransferase (EC 2.4.2.14) and adenine phosphoribosyltransferase (EC 2.4.2.7) are the same in uterine extracts from control and oestrogen-treated rats. 3. Therefore it was proposed that oestradiol might promote an increased supply of a rate-limiting substrate. The low oestrogen-sensitive rate of AMP synthesis from adenine and endogenous 5-phosphoribosyl 1-pyrophosphate in the intact uterus compared with the high, oestrogen-insensitive rate in uterine extracts supplemented with 5-phosphoribosyl 1-pyrophosphate is evidence that the supply of 5-phosphoribosyl 1-pyrophosphate limits purine nucleotide formation and may increase after hormone treatment. This proposal is supported by the decrease in AMP synthesis in the whole tissue in the presence of guanine and 7-amino-3-(beta-d-ribofuranosyl)pyrazolo[3,4-d]pyrimidine (formycin). These compounds do not inhibit adenine uptake or adenine phosphoribosyltransferase activity, but they both decrease the availability of 5-phosphoribosyl 1-pyrophosphate, the former by promoting its utilization by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and the latter by inhibiting its synthesis from ribose 5-phosphate and ATP by ribose 5-phosphate pyrophosphokinase (EC 2.7.6.1). 4. It is unlikely that the increased availability of 5-phosphoribosyl 1-pyrophosphate results from hormonal stimulation of ribose 5-phosphate formation. Methylene Blue and phenazine methosulphate both increase ribose 5-phosphate without altering the supply of 5-phosphoribosyl 1-pyrophosphate. 5. The activity of ribose 5-phosphate pyrophosphokinase is low in uterine extracts and increases rapidly in response to oestradiol. Therefore the hormonal activation of the routes of purine nucleotide synthesis both de novo and from preformed precursors may be due, at least in part, to an increased availability of the common rate-limiting substrate 5-phosphoribosyl 1-pyrophosphate, mediated by activation of ribose 5-phosphate pyrophosphokinase.  相似文献   

18.
Pretreatment of L1210 cells with methotrexate in concentrations which produced free intracellular methotrexate and near maximal inhibition of dihydrofolate reductase resulted in an enhancement of intracellular 5-fluorouracil (FUra) accumulation. This enhancement of FUra accumulation was maximum (5-fold increase) after a 6-h exposure to 100 microM methotrexate. The nucleotide derivatives of FUra, including a 5-fluoro-2'-deoxyuridylate, and 5-fluorouridine-5'-triphosphate were also increased nearly 5-fold following methotrexate treatment. In cells pretreated with methotrexate, there was an increase in intracellular 5-phosphoribosyl-1-pyrophosphate pools which ranged from 2 to 8 times control values following concentrations of methotrexate between 0.1 microM and 10 microM. Both the increase in 5-phosphoribosyl-1-pyrophosphate and FUra accumulation could be prevented by the addition of Leucovorin (N5-formyltetrahydrofolate) at concentrations which rescued cells from the inhibitory effects of methotrexate. Pretreatment with 6-methylmercaptopurine riboside, which inhibits amidophosphoribosyltransferase, the first committed step in de novo purine synthesis, also resulted in a similar elevation in 5-phosphoribosyl-1-pyrophosphate pools and enhancement of FUra accumulation. If the 5-phosphoribosyl-1-pyrophosphate pools were reduced following methotrexate pretreatment by the addition to the cultures of hypoxanthine, which utilizes 5-phosphoribosyl-1-pyrophosphate for the conversion to IMP, the intracellular accumulation of FUra was not enhanced. Also, if the inhibitor of 5-phosphoribosyl-1-pyrophosphate synthetase, 7-deazaadenosine, was given to cultures with methotrexate, there was no increase in 5-phosphoribosyl-1-pyrophosphate pools, nor enhancement of FUra accumulation. In addition, when 5-fluoro-2'-deoxyuridine was added with the methotrexate to cell cultures, there was no increase in 5-phosphoribosyl-1-pyrophosphate pools, nor enhancement of intracellular FUra accumulation. These results indicate that the ability of methotrexate to enhance FUra accumulation was probably the consequence of the antipurine effect of methotrexate which resulted in a reduction of the complex feedback inhibition on 5-phosphoribosyl-1-pyrophosphate synthesis and utilization. The resultant increased 5-phosphoribosyl-1-pyrophosphate pools were then capable of being utilized for the conversion of FUra to 5-fluorouridylate, the possible rate-limiting step in FUra intracellular metabolism and the major determinant of the rate of intracellular FUra accumulation. When methotrexate preceded FUra, there was synergistic cell killing as determined by soft agar cloning. The exact mechanism of this sequential synergistic antitumor activity may be the result of the enhanced incorporation of FUra into RNA, since the increased 5-fluoro-2'-deoxyuridylate which is formed is unlikely to increase substantially the inhibition of dTMP synthesis induced by methotrexate pretreatment.  相似文献   

19.
—The time course of changes in glycolytic and citric acid cycle intermediates and in amino acids was studied in acute and steady state hypercapnia. Experiments on unanaesthetized animals exposed to 10% CO2 for 10, 20 and 60s showed that there was a transient decrease in glycogen concentration, progressive increases in glucose-6-phosphate and fructose-6-phosphate and decreases in pyruvate and lactate. During this time the levels of amino acids and Krebs cycle intermediates did not change, except for a small fall in malate at 60s. The results indicate that there was a decrease in glycolytic flux due to an inhibition of the phosphofructokinase reaction. Since the tissue levels of phosphocreatine, ATP, ADP and AMP were unchanged inhibition of phosphofructokinase was probably due to the fall in pH. Anaesthetized animals were exposed to about 5% CO2 (for 2, 5, 15, 30 and 60 min) or to about 45% CO2 (for 5 and 15 min). Except for succinate, which increased, all citric acid cycle metabolites analysed (citrate, α-ketoglutarate, fumarate and malate) decreased with the rise in CO2-tension. The sum of the amino acids analysed (glutamate, glutamine, aspartate, asparagine, alanine and GABA) decreased at extreme hypercapnia. The results suggest that Krebs cycle intermediates and amino acids are partly used as substrates for energy production when there is reduced pyruvate availability due to hypercapnia. It is proposed that amino acid carbon is made available for oxidation via transamination (aspartate aminotransferase reaction) and deamination (glutamate dehydrogenase reaction) and that citric acid cycle intermediates are metabolized following a reversal of reactions usually leading to CO2 fixation.  相似文献   

20.
Summary The activities of the mevalonate metabolizing enzymes-HMG-CoA reductase, mevalonate kinase, mevalonate phosphokinase and mevalonate pyrophosphate decarboxylase -were assayed with the respective substrates in green seedlings of Arachis hypogaea. MVAPP decarboxylase is the rate-limiting step among these enzymes and is inhibited by phenolic acids. Its activity in the seedlings was found to decrease in the absence of light and on treatment with abscisic acid. These results suggest that regulation of isoprene pathway in groundnut seedlings may occur at the level of mevalonate decarboxylation.Abbreviations HMG CoA 3-hydroxy-3-methyl-glutaryl coenzyme A - MVA Mevalonate - MVAP Mevalonate-5-phosphate - MVAPP Mevalonate-5-pyrophosphate - DTT Dithiothreitol - ABA Abscisic Acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号