首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative proteomic approach was applied to examine nasal lavage fluid (NLF) from patients with seasonal allergic rhinitis (SAR, n = 6) and healthy subjects (controls, n = 5). NLF samples were taken both before allergy (pollen) season and during season, and proteins were analyzed by two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) after tryptic cleavage. Twenty proteins were selected and quantified. During allergy season, the levels of six sialylated isoforms of PLUNC (palate lung nasal epithelial clone) were lower in SAR patients than controls, as were the levels of six isoforms of von Ebner's gland protein (VEGP), including a previously undescribed form with N-linked glycosylation, and of cystatin S. PLUNC is a new innate immunity protein and VEGP and cystatin S are two endogenous proteinase inhibitors. By contrast, the levels of an acidic form of alpha-1-antitrypsin were higher in SAR patients than controls. One previously unidentified NLF protein was found in all samples from the SAR patients during allergy season but not in any sample before allergy season: this protein was identified as eosinophil lysophospholipase (Charcot-Leyden crystal protein/galactin 10). MS/MS analysis of the N-terminus of the protein showed removal of Met and acetylation of Ser. Altogether, these findings illustrate the potential use of proteomics for identifying protein changes associated with allergic rhinitis and for revealing post-translational modifications of such new potential markers of allergic inflammation.  相似文献   

2.
The determination of possible biomarkers in nasal secretion of healthy subjects can have a role in early diagnosis of diseases such as rhinosinusitis. For this purpose, nasal lavage fluids (NLFs) from ten volunteers, collected before and after they had been submitted to nasal provocations, were investigated. Separation and analysis of proteins present in this complex matrix was performed using a capillary liquid chromatography-electrospray-quadrupole-time of flight mass spectrometry equipment. From among a total of 111 proteins found (89 known and two unknown proteins), 42 of which had never been previously described in this fluid, such as Deleted in Malignant Brain Tumors 1 isoform a precursors, and cytoskeletal proteins were identified with high statistical score. Three proteins of palate lung nasal epithelial clone (PLUNC) family: SPLUNC1, LPLUNC1, and LPLUNC2 were identified. Proteins involved in innate (27%) and acquired immunity (21%) systems were major components of NLF. Cellular (52% of all proteins identified) such as cytoskeletal (33%), functional (15%), and regulatory (4%) proteins, normally present in the nasal cavity, have also been identified. The proteomic approach presented here allowed us to identify the proteins involved in acquired and innate immune response in the nose against microbial infections and unclean inhaled air.  相似文献   

3.
Although gene expression studies have shown that human PLUNC (palate, lung and nasal epithelium clone) proteins are predominantly expressed in the upper airways, nose and mouth, and proteomic studies have indicated they are secreted into airway and nasal lining fluids and saliva, there is currently little information concerning the localization of human PLUNC proteins. Our studies have focused on the localization of three members of this protein family, namely SPLUNC1 (short PLUNC1), SPLUNC2 and LPLUNC1 (long PLUNC1). Western blotting has indicated that PLUNC proteins are highly glycosylated, whereas immunohistochemical analysis demonstrated distinct patterns of expression. For example, SPLUNC2 is expressed in serous cells of the major salivary glands and in minor mucosal glands, whereas SPLUNC1 is expressed in the mucous cells of these glands. LPLUNC1 is a product of a population of goblet cells in the airway epithelium and nasal passages and expressed in airway submucosal glands and minor glands of the oral and nasal cavities. SPLUNC1 is also found in the epithelium of the upper airways and nasal passages and in airway submucosal glands, but is not co-expressed with LPLUNC1. We suggest that this differential expression may be reflected in the function of individual PLUNC proteins.  相似文献   

4.
The aims of this study were to describe the changes in the nasal lavage fluid (NLF) protein pattern after exposure to the irritating epoxy chemical dimethylbenzylamine (DMBA) and to identify the affected proteins using a proteomic approach. The protein patterns of NLF from six healthy subjects and eight epoxy workers with airway irritation were analysed using two-dimensional gel electrophoresis (2-DE) before and after exposure to 100 microg m(-3) DMBA for 2 h in an exposure chamber. NLF proteins were identified by (i) comparison with a 2-DE NLF reference database; (ii) N-terminal amino acid sequencing; and (iii) mass spectrometry. In NLF from healthy subjects, the levels of immunoglobulin A increased and the levels of Clara cell protein 16 (CC16) decreased after chamber exposure, while in NLF from epoxy workers, alpha(2)-macroglobulin and caeruloplasmin increased. Two previously unidentified proteins decreased in NLF from epoxy workers after exposure; these were identified as statherin and calgranulin B. In addition, the subjects who developed high counts of eosinophils in their nasal mucosa after chamber exposure had significantly lower levels of immunoglobulin-binding factor (IgBF) before exposure than subjects with low eosinophil infiltration. These results show that short-term exposure to DMBA causes distinct changes in NLF proteins. Moreover, three proteins that have previously not been associated with upper airway irritation were identified: statherin, calgranulin B and IgBF. Further studies are needed to investigate whether these proteins may be used as biomarkers of airway irritation and to give new insight into the ways in which occupational exposure to irritants causes inflammation of the airways.  相似文献   

5.
PLUNC (palate, lung and nasal epithelium clone) proteins make up the largest branch of the BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein) family of lipid-transfer proteins. PLUNCs make up one of the most rapidly evolving mammalian protein families and exhibit low levels of sequence similarity coupled with multiple examples of species-specific gene acquisition and gene loss. Vertebrate genomes contain multiple examples of genes that do not meet our original definition of what is required to be a member of the PLUNC family, namely conservation of exon numbers/sizes, overall protein size, genomic location and the presence of a conserved disulfide bond. This suggests that evolutionary forces have continued to act on the structure of this conserved domain in what are likely to be functionally important ways.  相似文献   

6.
Epithelial antimicrobial activity may protect the lung against inhaled pathogens. The bactericidal/permeability-increasing protein family has demonstrated antimicrobial activity in vitro. PLUNC (palate, lung, and nasal epithelium associated) is a 25-kDa secreted protein that shares homology with bactericidal/permeability-increasing proteins and is expressed in nasopharyngeal and respiratory epithelium. The objective of this study was to determine whether PLUNC can limit Pseudomonas aeruginosa infection in mice. Transgenic mice (Scgb1a1-hPLUNC) were generated in which human PLUNC (hPLUNC) was directed to the airway epithelium with the Scgb1a1 promoter. The hPLUNC protein (hPLUNC) was detected in the epithelium throughout the trachea and bronchial airways and in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid from transgenic mice exhibited higher antibacterial activity than that from wild type littermates in vitro. After in vivo P. aeruginosa challenge, Scgb1a1-hPLUNC transgenic mice displayed enhanced bacterial clearance. This was accompanied by a decrease in neutrophil infiltration and cytokine levels. More importantly, the overexpressed hPLUNC in Scgb1a1-hPLUNC transgenic mouse airway significantly enhanced mouse survival against P. aeruginosa-induced respiratory infection. These data indicate that PLUNC is a novel antibacterial protein that likely plays a critical role in airway epithelium-mediated innate immune response.  相似文献   

7.
We recently described the Palate Lung Nasal Clone (PLUNC) family of proteins as an extended group of proteins expressed in the upper airways, nose and mouth. Little is known about these proteins, but they are secreted into the airway and nasal lining fluids and saliva where, due to their structural similarity with lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein, they may play a role in the innate immune defence. We now describe the generation and characterisation of novel affinity-purified antibodies to SPLUNC2, and use them to determine the expression of this, the major salivary gland PLUNC. Western blotting showed that the antibodies identified a number of distinct protein bands in saliva, whilst immunohistochemical analysis demonstrated protein expression in serous cells of the major salivary glands and in the ductal lumens as well as in cells of minor mucosal glands. Antibodies directed against distinct epitopes of the protein yielded different staining patterns in both minor and major salivary glands. Using RT-PCR of tissues from the oral cavity, coupled with EST analysis, we showed that the gene undergoes alternative splicing using two 5′ non-coding exons, suggesting that the gene is regulated by alternative promoters. Comprehensive RACE analysis using salivary gland RNA as template failed to identify any additional exons. Analysis of saliva showed that SPLUNC2 is subject to N-glycosylation. Thus, our study shows that multiple SPLUNC2 isoforms are found in the oral cavity and suggest that these proteins may be differentially regulated in distinct tissues where they may function in the innate immune response.  相似文献   

8.
Potential biological markers for cystic fibrosis (CF) lung disease were identified by comparative proteomics profiling of nasal cells from deletion of phenylalanine residue 508 (F508del)-homozygous CF patients and non-CF controls. From the non-CF 2-DE gels, 65 spots were identified by MS, and a reference 2-DE map was thus established. The majority of those correspond to ubiquitously expressed proteins. Consistent with the epithelial origin of this tissue, some of the identified proteins are epithelial markers (e.g. cytokeratins, palate lung and nasal epithelium clone protein (PLUNC), and squamous cell carcinoma antigen 1). Comparison of this protein profile with the one similarly obtained for CF nasal cells revealed a set of differentially expressed proteins. These included proteins related to chronic inflammation and some others involved in oxidative stress injury. Alterations were also observed in the levels of cytoskeleton proteins, being probably implicated with cytoskeleton organization changes described to occur in CF-airways. Lower levels were found for some mitochondrial proteins suggesting an altered mitochondrial metabolism in CF. Differential expression was also found for two more enzymes that have not been previously associated to CF. Further studies will clarify the involvement of such proteins in CF pathophysiology and whether they are targets for CF therapy.  相似文献   

9.
Phylogenetic and evolutionary analysis of the PLUNC gene family   总被引:7,自引:0,他引:7  
The PLUNC family of human proteins are candidate host defense proteins expressed in the upper airways. The family subdivides into short (SPLUNC) and long (LPLUNC) proteins, which contain domains predicted to be structurally similar to one or both of the domains of bactericidal/permeability-increasing protein (BPI), respectively. In this article we use analysis of the human, mouse, and rat genomes and other sequence data to examine the relationships between the PLUNC family proteins from humans and other species, and between these proteins and members of the BPI family. We show that PLUNC family clusters exist in the mouse and rat, with the most significant diversification in the locus occurring for the short PLUNC family proteins. Clear orthologous relationships are established for the majority of the proteins, and ambiguities are identified. Completion of the prediction of the LPLUNC4 proteins reveals that these proteins contain approximately a 150-residue insertion encoded by an additional exon. This insertion, which is predicted to be largely unstructured, replaces the structure homologous to the 40s hairpin of BPI. We show that the exon encoding this region is anomalously variable in size across the LPLUNC proteins, suggesting that this region is key to functional specificity. We further show that the mouse and human PLUNC family orthologs are evolving rapidly, which supports the hypothesis that these proteins are involved in host defense. Intriguingly, this rapid evolution between the human and mouse sequences is replaced by intense purifying selection in a large portion of the N-terminal domain of LPLUNC4. Our data provide a basis for future functional studies of this novel protein family.  相似文献   

10.
Long PLUNC1 (LPLUNC1, C20orf114) is a member of a family of poorly described proteins (PLUNCS) expressed in the upper respiratory tract and oral cavity, which may function in host defence. Although it is one of the most highly expressed genes in the upper airways and has been identified in sputum and nasal secretions by proteomic studies, localisation of LPLUNC1 protein has not yet been described. We developed affinity purified antibodies and localised the protein in tissues of the human respiratory tract, oro- and nasopharynx. We have complemented these studies with analysis of LPLUNC1 expression in primary human lung cell cultures and used Western blotting to study the protein in cell culture secretions and in BAL. LPLUNC1 is a product of a population of goblet cells in the airway epithelium and nasal passages and is also present in airway submucosal glands and minor glands of the oral and nasal cavities. The protein is not expressed in peripheral lung epithelial cells. LPLUNC1 is present in bronchoalveolar lavage fluid as two glycosylated isoforms and primary airway epithelial cells produce identical proteins as they undergo mucociliary differentiation. Our results suggest that LPLUNC1 is an abundant, secreted product of goblet cells and minor mucosal glands of the respiratory tract and oral cavity and suggest that the protein functions in the complex milieu that protects the mucosal surfaces in these locations.  相似文献   

11.
The innate immune response is of pivotal importance in defending the mucosal barriers of the body against pathogenic attack. The list of proteins that contribute to this defense mechanism is constantly being updated. In this review we introduce a novel family of secreted proteins, palate, lung, and nasal epithelium clones (PLUNCs), that are expressed in the mouth, nose and upper airways of humans, mice, rats and cows. In humans, PLUNC genes are located in a compact cluster on chromosome 20, with similar loci being found in synteneic locations in other species. The protein products of this gene cluster are predicted to be structural homologues of the human lipopolysaccharide binding proteins, lipopolysaccharide binding-protein (LBP) and bacterial permeability-increasing protein (BPI), which are known mediators of host defense against Gram-negative bacteria. On the basis of these observations we outline why we believe PLUNC proteins mediate host defense functions in the oral, nasal and respiratory epithelia.  相似文献   

12.
Identification of human whole saliva protein components using proteomics   总被引:9,自引:0,他引:9  
The determination of salivary biomarkers as a means of monitoring general health and for the early diagnosis of disease is of increasing interest in clinical research. Based on the linkage between salivary proteins and systemic diseases, the aim of this work was the identification of saliva proteins using proteomics. Salivary proteins were separated using two-dimensional (2-D) gel electrophoresis over a pH range between 3-10, digested, and then analyzed by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-TOF mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Proteins were identified using automated MS and MS/MS data acquisition. The resulting data were searched against a protein database using an internal Mascot search routine. Ninety spots give identifications with high statistical reliability. Of the identified proteins, 11 were separated and identified in saliva for the first time using proteomics tools. Moreover, three proteins that have not been previously identified in saliva, PLUNC, cystatin A, and cystatin B were identified.  相似文献   

13.

Background

The PLUNC (“Palate, lung, nasal epithelium clone”) protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family - the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP) - are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways.

Methodology/Principal Findings

Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model.

Conclusions/Significance

Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.  相似文献   

14.
PLUNC (palate, lung and nasal epithelium clone)-associated gene originally referred to one gene, but now has been extended to represent a gene family that consists of a number of genes with peptide sequence homologies and predicted structural similarities. PLUNC-like proteins display sequence homology with BPI (bactericidal/permeability-increasing protein), a 456-residue cationic protein produced by precursors of polymorphonuclear leucocytes that have been shown to possess both bactericidal and LPS (lipopolysaccharide)-binding activities. The human PLUNC is also known as LUNX (lung-specific X protein), NASG (nasopharyngeal carcinoma-related protein) and SPURT (secretory protein in upper respiratory tract). The gene originally named PLUNC is now recognized as SPLUNC1. Its gene product SPLUNC1 is a secretory protein that is abundantly expressed in cells of the surface epithelium in the upper respiratory tracts and secretory glands in lung, and in the head and the neck region. The functional role of SPLUNC1 in innate immunity has been suggested but not clearly defined. The present review describes recent findings that support antimicrobial and anti-inflammatory functions of SPLUNC1 in Gram-negative bacteria-induced respiratory infection.  相似文献   

15.
The chicken egg possesses physical and chemical barriers to protect the embryo from pathogens. OCX-36 (ovocalyxin-36) was suggested to be a 36?kDa eggshell-specific protein that is secreted by the regions of the oviduct responsible for eggshell formation. Its expression is strongly up-regulated during shell calcification. This protein was also detected in vitelline membrane and expressed in gut tissues. Analysis of the OCX-36 protein sequence revealed that OCX-36 is related to the BPI (bactericidal permeability-increasing proteins)/LBP [LPS (lipopolysaccharide)-binding proteins]/PLUNC (palate, lung and nasal epithelium clone) superfamily, and that there are strong similarities between the exon/intron organization of the mammalian LBP/BPI and the avian OCX-36 genes. A recent study revealed that OCX-36 originates from a tandem duplication of an ancestral BPI/LBP/PLUNC gene, after the divergence of birds and mammals. Its antimicrobial activity was recently investigated and it was shown that OCX-36 binds to LPS from Escherichia coli. High-throughput methodologies have led to the identification of approximately 1000 new egg proteins. Among these are LBP/BPI proteins that might play a role in the natural defences of the egg to protect the embryo during its development in the external milieu, and may function to keep the table egg free of pathogens. The function of these BPI-like molecules is the subject of intense research to characterize their putative LPS-binding properties and antimicrobial activity.  相似文献   

16.
Saliva influences rumen function in cattle, yet the biochemical role for most of the bovine salivary proteins (BSPs) has yet to be established. Two cDNAs (BSP30a and BSP30b) from bovine parotid salivary gland were cloned and sequenced, each coding for alternate forms of a prominent protein in bovine saliva. The BSP30 cDNAs share 96% sequence identity with each other at the DNA level and 83% at the amino acid level, and appear to arise from separate genes. The predicted BSP30a and BSP30b proteins share 26-36% amino acid identity with parotid secretory protein (PSP) from mouse, rat and human. BSP30 and PSP are in turn more distantly related to a wider group of proteins that includes lung-specific X protein, also known as palate, lung, and nasal epithelium clone (LUNX/PLUNC), von Ebner's minor salivary gland protein (VEMSGP), bactericidal permeability increasing protein (BPI), lipopolysaccharide binding protein (LBP), cholesteryl ester transfer protein (CETP), and the putative olfactory ligand-binding proteins RYA3 and RY2G5. Bovine cDNAs encoding homologs of LUNX/PLUNC and VEMSGP were isolated and sequenced. Northern blot analysis showed that LUNX/PLUNC, BSP30 and VEMSGP are expressed in bovine salivary tissue and airways, and that they have non-identical patterns of expression in these tissues. The expression of both BSP30a and BSP30b is restricted to salivary tissue, but within this tissue they have distinct patterns of expression. The proximity of the human genes coding for the PSP/LBP superfamily on HSA20q11.2, their similar amino acid sequence, and common exon segmentation strongly suggest that these genes evolved from a common ancestral gene. Furthermore, they imply that the BSP30a and BSP30b proteins may have a function in common with other members of this gene family.  相似文献   

17.
PLUNC (palate, lung and nasal epithelium clone) protein is an abundant secretory product of epithelia throughout the mammalian conducting airways. Despite its homology with the innate immune defence molecules BPI (bactericidal/permeability-increasing protein) and LBP (lipopolysaccharide-binding protein), it has been difficult to define the functions of PLUNC. Based on its marked hydrophobicity and expression pattern, we hypothesized that PLUNC is an airway surfactant. We found that purified recombinant human PLUNC exhibited potent surfactant activity by several different measures, and experiments with airway epithelial cell lines and primary cultures indicate that native PLUNC makes a significant contribution to the overall surface tension in airway epithelial secretions. Interestingly, we also found that physiologically relevant concentrations of PLUNC-inhibited Pseudomonas aeruginosa biofilm formation in vitro without acting directly as a bactericide. This finding suggests that PLUNC protein may inhibit biofilm formation by airway pathogens, perhaps through its dispersant properties. Our data, along with reports from other groups on activity against some airway pathogens, expand on an emerging picture of PLUNC as a multifunctional protein, which plays a novel role in airway defences at the air/liquid interface.  相似文献   

18.

Background

Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF) cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV) on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers.

Methods

In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK) cells from nonsmokers and smokers at baseline were stimulated in vitro with LAIV followed by flow cytometric and mediator analyses.

Results

CD45(+)CD56(-)CD16(+) neutrophils and CD45(+)CD56(+) NK cells comprised median 4.62% (range 0.33-14.52) and 23.27% (18.29-33.97), respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+) NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers in vitro but did not induce changes in CD16(+) NK cells or granzyme B activity in either group.

Conclusions

These data are the first to identify NK cells as a major immune cell type in the NLF cell population and demonstrate that mucosal NK cell cytotoxic function is suppressed in smokers following LAIV. Altered NK cell function in smokers suggests a potential mechanism that may enhance susceptibility to respiratory viruses.  相似文献   

19.

Background

Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF) cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV) on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers.

Methods

In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK) cells from nonsmokers and smokers at baseline were stimulated in vitro with LAIV followed by flow cytometric and mediator analyses.

Results

CD45(+)CD56(-)CD16(+) neutrophils and CD45(+)CD56(+) NK cells comprised median 4.62% (range 0.33-14.52) and 23.27% (18.29-33.97), respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+) NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers in vitro but did not induce changes in CD16(+) NK cells or granzyme B activity in either group.

Conclusions

These data are the first to identify NK cells as a major immune cell type in the NLF cell population and demonstrate that mucosal NK cell cytotoxic function is suppressed in smokers following LAIV. Altered NK cell function in smokers suggests a potential mechanism that may enhance susceptibility to respiratory viruses.  相似文献   

20.
We present the BPIFAn/BPIFBn systematic nomenclature for the PLUNC (palate lung and nasal epithelium clone)/PSP (parotid secretory protein)/BSP30 (bovine salivary protein 30)/SMGB (submandibular gland protein B) family of proteins, based on an adaptation of the SPLUNCn (short PLUNCn)/LPLUNCn (large PLUNCn) nomenclature. The nomenclature is applied to a set of 102 sequences which we believe represent the current reliable data for BPIFA/BPIFB proteins across all species, including marsupials and birds. The nomenclature will be implemented by the HGNC (HUGO Gene Nomenclature Committee).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号