首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to characterize a new mutation in the LDL-receptor (LDLR) gene in three families with clinically diagnosed familial hypercholesterolemia (FH) from the South-Eastern part of Poland. Mutational screening with exon by exon sequencing analysis was performed in all probands. The novel mutation c986G>T (Cys308Phe) in the exon 7 of LDLR gene was found in three apparently unrelated probands with FH. Analysis of the receptor activity of peripheral blood lymphocytes by binding and uptake of DiL-LDL showed a significant reduction (by 24% versus healthy control) of the fluorescent label in the lymphocytes of patients heterozygous for this mutation. Concentrations of serum LDL-C in probands before treatment were between 9.5 and 10.5 mmol/l. All patients had corneal arcus and tendon xanthoma. Clinically, families were characterized by premature coronary artery disease. This mutation occurred relatively frequently in our group of patients with FH, but this could be explained by a founder effect since we demonstrated their common ancestors.  相似文献   

2.
Familial hypercholesterolemia (FH) is a common genetic disorder caused by mutations of the LDL-receptor gene and transmitted as a co-dominant trait. However, there are some forms of hypercholesterolemia which have a recessive type of transmission. We have identified a subject with the clinical phenotype of heterozygous FH whose parents had normal plasma lipid values, suggesting a recessive type of transmission. The analysis of the LDL-receptor gene revealed that the patient was heterozygous for a G>C transversion in exon 4, which results in a serine for cysteine substitution at position 88 (C88S) of the receptor protein. Since this novel mutation was not found in the proband's parents and non-paternity was excluded, we concluded that the patient was a carrier of a "de novo" mutation. Haplotype analysis of LDL-receptor locus indicated that this "de novo" mutation occurred in the paternal germ line. The C88S mutation is the likely cause of LDL-receptor defect as it was present in the proband's hypercholesterolemic son and was not found in 200 chromosomes of control subjects.  相似文献   

3.
Summary To examine the potential usefulness of restriction fragment length polymorphisms (RFLPs) for diagnosis of familial hypercholesterolemia (FH), we determined the genotype of FH patients and their relatives for the ApalI, NcoI, PvuII and StuI RFLP of the LDL-receptor gene in a sample of German patients attending the Lipid Clinic in Munich. There was no significant difference in the relative allele frequency between the group of FH patients and controls for any of the four polymorphisms. Using linkage analysis, we could determine the four-RFLP haplotypes of 39 defective and 90 normal LDL-receptor genes in 38 FH families. In our sample, defective LDL-receptor genes occur on 6 different chromosomes determined by the four RFLPs. This suggests that at least 6 different genetic defects may cause FH in this sample. RFLPs of the LDL-receptor gene cannot be used to detect FH in individuals; however, appropriate diagnosis can be carried out in more than 90% of families using linkage analysis and these RFLPs.  相似文献   

4.
In South African Afrikaners, three point mutations in the gene coding for the low-density lipoprotein (LDL)-receptor are responsible for more than 95% of the cases of familial hypercholesterolemia (FH). To investigate whether one or more of these mutations originated in The Netherlands, a large group of Dutch heterozygous FH patients was screened for the presence of these three mutations. Of these, a missense mutation in exon 9 of the LDL-receptor gene, resulting in a substitution of Met for Val408, responsible for 15% of FH in Afrikaners, was found in 19 (1.5%) of 1268 FH patients of Dutch descent. Nine of the patients carrying the exon 9 mutation on one allele shared the LDL-receptor DNA haplotype with an FH patient from South Africa, who was homozygous for the same mutation. This would suggest that the mutation in these patients and in the South African patient have a common ancestral background. The remaining ten FH patients all shared a common haplotype, partly identical to the Afrikaner haplotype, which chould have arisen from a single recombinational event. This mutation has not been described in persons other than of Dutch ancestry and supports the hypothesis that this mutation in exon 9 originated in The Netherlands and, in all likelihood, was introduced into South Africa by early Dutch settlers in the seventeenth century.  相似文献   

5.
The molecular basis of familial hypercholesterolemia in The Netherlands   总被引:6,自引:0,他引:6  
Mutations in the low-density lipoprotein (LDL) receptor gene are responsible for familial hypercholesterolemia (FH). At present, more than 600 mutations in this gene are known to underlie FH. However, the array of mutations varies considerably in different populations. Therefore, the delineation of essentially all LDL-receptor gene mutations in a population is a prerequisite for the implementation of nation-wide genetic testing for FH. In the Netherlands, mutation analysis by denaturing gradient gel electrophoresis and sequencing in 1641 clinically diagnosed FH patients resulted in the characterization of 159 different LDL-receptor gene defects. The nine most common mutations were responsible for 66.5% of our FH index cases. Of these, four mutations occurred with relatively high frequencies in specific parts of the Netherlands. The remaining mutations were only encountered in single FH patients, comprising 22.2% of the patient cohort analyzed. Subsequent genetic testing of relatives of the index cases within the national FH screening program resulted in the identification of 5,531 FH patients in total. The analysis for LDL-receptor mutations is a continuing effort to update the LDL-receptor mutation catalogue. Subsequently, with the newly generated index cases, the screening program can be extended and continued to identify and treat FH patients as early as possible and reduce cardiovascular morbidity and mortality in these patients at high risk.  相似文献   

6.
In the LDL-receptor gene, a large rearrangement causing hypercholesterolemia was detected in three apparently unrelated families living in northern Italy. In all probands, binding, internalization, and degradation of 125I-LDL measured in skin fibroblasts were found to be 40%-50% of control values, indicative of heterozygous familial hypercholesterolemia (FH). Southern blot analysis revealed that the probands were heterozygous for a large (25-kb) deletion of the LDL-receptor gene eliminating exons 2-12. The affected subjects possessed two LDL-receptor mRNA species: one of normal size (5.3 kb) and one of smaller size (3.5 kb). In the latter mRNA, the coding sequence of exon 1 is joined to the coding sequence of exon 13, causing a change in the reading frame and thereby giving rise to a premature stop codon. The receptor protein deduced from the sequence of the defective mRNA is a short polypeptide of 29 amino acids, devoid of any function. Tracing these three families back to the 17th century, we found both their common ancestor and the possible origin of the mutation, in a region which is called "Lomellina" and which is located in southwest Lombardy, near the old city of Pavia. Therefore we named the mutation "FH-Pavia."  相似文献   

7.
Many low-density lipoprotein (LDL) receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL-receptor genes for prenatal diagnosis of familial hypercholesterolemia (FH) or to study the role of the LDL-receptor gene in polygenic hypercholesterolemia requires the use of closely linked restriction fragment lenghth polymorphisms (RFLPs). In the present study nine different RFLPs (TaqI, StuI, HincII, BstEII, AvaII, PvuII, MspIA, MspIB, and NcoI) and a sequence variation at Arg450 were used to clarify the characteristics of the LDL-receptor gene in Koreans. A total of 978 LDL-receptor alleles from 244 members of 43 different pedigrees (15 normal and 28 FH pedigrees) and 245 individuals (187 normal and 58 FH) were analyzed. Frequencies of these polymorphisms did not differ significantly between controls and FH patients. Individually, seven sites--TaqI, BstEII, AvaII, MspIA, MspIB, NcoI and Arg450--had heterozygosity indices ranging from 0.3610 to 0.4601, whereas the PvuII site displayed low levels of polymorphism and StuI was monomorphic. Haplotypes were constructed for 215 individuals of 13 normal and 24 FH pedigrees using the nine polymorphisms. Of 512 (= 2(9)) possible combinations for the nine polymorphic sites, 39 unique haplotypes were detected. The frequency distribution of individual haplotypes ranged from 1/155 (0.65%) to 40/155 (25.8%). The four most common haplotypes accounted for 59.4% of those sampled. Statistical analysis of the haplotypes indicated marked linkage disequilibrium for these 10 sites and throughout the region containing the LDL-receptor gene. Owing to the high degree of linkage disequilibrium over the entire locus, not all RFLPs were informative. We rank each RFLP according to its informativeness and present a strategy for the optimal selection of RFLPs for pedigree analysis.  相似文献   

8.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here we characterize an LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found neither in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.  相似文献   

9.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low density lipoprotein (LDL) receptor gene. Here, we characterize an LDL receptor mutation that is associated with a distinct haplotype and that causes FH in the Jewish Sephardic population originating from Safed, a town in northern Israel. The mutation was found in eight FH families originating from this community comprising 10% of heterozygote FH index cases screened in Israel. The mutation was not found in four additional FH heterozygotes whose hypercholesterolemia co-segregated with an identical LDL receptor gene haplotype. A guanine to cytosine substitution results in a missense mutation (asp147 to his) in the fourth repeat of the binding domain encoded by exon 4 of the LDL receptor gene. The mutant receptor protein was synthesized in cultured cells as a 120kDa precursor form that failed to undergo normal processing to a mature cell surface form. Most of the receptor precursors were degraded in the endoplasmic reticulum. The small number of mutant receptors on the cell surface were unable to bind LDL or very low density lipoprotein. The abnormal behavior of the mutant receptor was reproduced by site-directed mutagenesis and expression of the mutant protein in CHO cells. The mutation can be diagnosed by allele-specific oligonucleotide hybridization of polymerase chain reaction amplified DNA from FH patients.  相似文献   

10.
Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively.  相似文献   

11.
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor.Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway.Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing.Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment.Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.  相似文献   

12.
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant disorder characterized by smooth-muscle tumors of the skin and uterus and/or renal cancer. Although the identification of germline mutations in the fumarate hydratase (FH) gene in European families supports it as the susceptibility gene for HLRCC, its role in families in North America has not been studied. We screened for germline mutations in FH in 35 families with cutaneous leiomyomas. Sequence analysis revealed mutations in FH in 31 families (89%). Twenty different mutations in FH were identified, of which 18 were novel. Of these 20 mutations, 2 were insertions, 5 were small deletions that caused frameshifts leading to premature truncation of the protein, and 13 were missense mutations. Eleven unrelated families shared a common mutation: R190H. Eighty-one individuals (47 women and 34 men) had cutaneous leiomyomas. Ninety-eight percent (46/47) of women with cutaneous leiomyomas also had uterine leiomyomas. Eighty-nine percent (41/46) of women with cutaneous and uterine leiomyomas had a total hysterectomy, 44% at age < or =30 years. We identified 13 individuals in 5 families with unilateral and solitary renal tumors. Seven individuals from four families had papillary type II renal cell carcinoma, and another individual from one of these families had collecting duct carcinoma of the kidney. The present study shows that mutations in FH are associated with HLRCC in North America. HLRCC is associated with clinically significant uterine fibroids and aggressive renal tumors. The present study also expands the histologic spectrum of renal tumors and FH mutations associated with HLRCC.  相似文献   

13.
This study reports the characterization of 60% of low density lipoprotein receptor (LDLR) gene mutations in 150unrelated Greek familial hypercholes-terolaemia (FH) heterozygous children by the analysis of six LDLR gene mutations. The linkage disequilibrium of two polymorphic microsatellites (D19S394 and D19S221) flanking the LDLR gene on chromosome19 to the four most common mutations strongly suggests that each mutation is identical-by-descent in the probands included in this study (this is also supported by the geographical distribution of FH families with these mutations throughout Greece) and permits an estimation of the number of generations from a common ancestor for each mutation. The characterization of 60% of LDLR mutations in a representative sample of Greek FH heterozygotes provides a basis for the diagnosis of FH through DNA analysis in Greece, by using single-strand conformation polymorphism analysis followed by allele-specific oligonucleotide hybridization (exon6 mutations) or restriction endonuclease analysis (C152R, V408M). A rapid diagnostic assay positive for the mutation has been developed for the most common mutation, G528D. The application of simple DNA diagnostic assays for LDLR mutation analysis are appropriate for the early identification of FH heterozygotes in Greece and are useful for the primary prevention of coronary artery disease. Received: 7 July 1997 / Accepted: 5 November 1997  相似文献   

14.
In this report on the outcome of the first prenatal diagnosis performed for familial hypercholesterolemia (FH) in a South African family, we aim to demonstrate the value of a population-directed screening strategy to identify FH patients in populations with an enrichment for certain low-density lipoprotein receptor (LDLR) gene mutations. Prenatal diagnosis was offered to an Afrikaner couple, both partners heterozygous for the FH mutation D206E, whose first child was diagnosed with heterozygous FH and the second with homozygous FH. Genomic DNA isolated from parental peripheral blood and subsequently amniotic fluid was amplified by the polymerase chain reaction (PCR) and subjected to mutation analysis. Heterozygosity for mutation D206E was confirmed in both parents, whilst this mutation was not detected in DNA directly amplified from amniotic fluid. To exclude the possibility of a false-negative result due to the limited number of cells in the uncultured amniotic fluid sample, cells were also cultured in vitro, and the DNA extracted and subjected to a second round of analysis. This confirmed the absence of mutation D206E in the fetus. This case illustrates the application of a DNA-based mutation detection technique as a simple and rapid diagnostic aid that can be carried out at a relatively early gestational stage. Prenatal diagnosis of FH, aimed at the detection of homozygous cases, is particularly feasible in populations and families with molecularly defined LDLR gene mutations.  相似文献   

15.
The incidence of familial hypercholesterolemia (FH) is high among South African Indians. The proline664-leucine low density lipoprotein (LDL)-receptor mutation was detected in four apparently unrelated Indian FH families in South Africa. This mutation was originally described in an FH subject (MM) of Indian (Gujerat province) origin (Soutar et al. 1989. Proc. Natl. Acad. Sci. 86: 4166-4170). All four South African families trace their origin to the vicinity of Surat in the Gujerat province of India. Haplotype analyses revealed that both LDL receptor genes in one of the homozygous patients are the same as those in the subject MM. The phenotype of the mutant protein was analyzed in skin fibroblasts of homozygous patients. [35S]methionine pulse-chase experiments revealed that the receptor precursors were slowly processed to mature receptors. Mature mutant receptors were degraded at faster than normal rates. This mutation, which is in the epidermal growth factor (EGF)-precursor-like domain of the LDL receptor, was previously reported to yield binding-defective receptors. Here we report that the affinity of the mutant LDL receptor for both LDL and beta-very low density lipoprotein (beta-VLDL) was normal and that the steady-state level of mutant receptors was about 20% of normal. Thus, the disease FH in these subjects is presumably due to the low steady-state level of receptor molecules that are functionally normal but exhibit accelerated turnover.  相似文献   

16.
A novel complex mutation with the presence of both deletion and insertion in very close proximity in the same region was detected in exon 8 of the LDL receptor gene from two apparently unrelated Japanese families with familial hypercholesterolemia (FH). In this mutant LDL receptor gene, the nine bases from nucleotide (nt) 1115 to nt 1123 (AGGGTGGCT) were replaced by six different bases (CACTGA), and consequently the four amino acids from codon 351 to 354, Glu-Gly-Gly-Tyr, were replaced by three amino acids, Ala-Leu-Asn, in the conserved amino acid region of the growth factor repeat B of the LDL receptor. The nature of the amino acid substitution and data on the families suggest that this mutation is very likely to affect the LDL receptor function and cause FH. The generation of this complex mutation can be explained by the simultaneous occurrence of deletion and insertion through the formation of a hairpin-loop structure mediated by inverted repeat sequences. Thus this mutation supports the hypothesis that inverted repeat sequences influence the stability of a given gene and promote human gene mutations.  相似文献   

17.
A cDNA probe for the low density lipoprotein (LDL) receptor gene was used to screen DNA samples from 52 unrelated Finnish patients with the heterozygous form of familial hypercholesterolemia (FH) and 51 healthy controls. Southern blot analysis using the restriction enzyme PvuII revealed an abnormal 11 kb (kilo base-pair) restriction fragment in 16 (31%) of the patients but none of the controls. A more detailed restriction enzyme analysis of the DNA from patients revealed a mutation which apparently is due to an 8 kb deletion extending from intron 15 to exon 18 of the LDL receptor gene. Co-segregation of FH with the mutated gene was demonstrated in three families. These data are consistent with a ‘founder gene effect’ and support the assumption that recombinant DNA methods may have great impact on the diagnostics of FH in genetically homogeneous populations.  相似文献   

18.
Examination of low-density lipoprotein (LDL) receptor, its promoter, and major exon-intron boundaries from a sample of patients with familial hypercholesterolemia (FH) from 74 probands of St. Petersburg revealed 34 mutations and 8 widely spread polymorphisms at this locus. Only four mutations were considered silent, while the other 30 are likely associated with familial hypercholesterolemia (FH). Mutations in the LDL receptor gene, inducing the disease, were identified in 41 (55%) out of 74 families with FH. Mutation R3500Q in apolipoprotein B (APOB) gene was not detected in all probands. Therefore in the families lacking mutations hypercholesterolemia was induced by mutations in the introns of the LDL receptor gene or by other genetic factors. Nineteen mutations causing disease progression were described in St. Petersburg for the first time, while 18 of them are specific for Russia. Among Ashkenazi Jews, major mutation G197del was detected in 30% (7 out of 22) of patients with FH. In the Slavic population of St. Petersburg, no major mutations were detected. Only five mutations were identified in two families, while 24 were found in isolated families. These data are indicative of the lack of a strong founder effect for FH in the St. Petersburg population.  相似文献   

19.
Prenatal diagnosis for familial hypercholesterolaemia (FH) was performed by using restriction fragment length polymorphisms (RFLPs) of the LDL receptor gene on chorionic villi DNA taken during the 10th week of pregnancy. Both parents were FH heterozygotes and had previously had a healthy son and an FH homozygous son. Two RFLPs were informative in this family and revealed that the fetus was unaffected by FH. At birth the child was found to have an LDL cholesterol level of 30 mg/dl and a normal LDL receptor activity in cultured umbilical cord fibroblasts. RFLP analysis on chorionic villi DNA is highly recommended for all heterozygous FH couples in whom the LDL receptor gene mutation/s is/are still to be characterized.  相似文献   

20.
The molecular basis of familial hypercholesterolemia (FH) in three families of Spanish descent from La Habana was investigated by the candidate gene approach. The Arg3500Gln mutation of apolipoprotein B-100 was not found. Identification of low density lipoprotein receptor (LDLR) gene haplotypes segregating with FH guided the characterisation of three point mutations by automated sequencing. One, a Val408Met missense mutation, a founder mutation in Afrikaner FH patients, was recurrent, being associated with a distinct DNA haplotype. The other two, Glu256Lys and Val776Met missense mutations, were novel and modified highly conserved residues. These mutations were absent in normolipidemic subjects and were associated in heterozygous carriers with twice the cholesterol levels observed in noncarriers. Noticeably, cardiovascular complications were rarely observed in older heterozygotes, even in those with the Afrikaner FH-2 mutation. These findings confirm the molecular heterogeneity of LDLR gene mutations causing FH and the variability of their expression across different populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号