首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the sequence of cDNA encoding the intracellular domain of the insulin receptor beta-subunit, we recently defined a heterozygous point mutation causing a Ser for Trp substitution at position 1200 in the tyrosine kinase domain of a patient (BI-2) with the type A syndrome of insulin resistance. We have now sequenced the remainder of BI-2's insulin receptor cDNA-coding region and find no additional alterations in the encoded proreceptor protein. The nucleotide sequence of cDNA encoding the portion of the beta-subunit which includes Trp1200 was normal in BI-2's unaffected mother. Hybridization of a mutant allele-specific oligonucleotide to polymerase chain reaction-amplified cDNA confirmed the presence of the mutant allele in the proband and excluded it in her unaffected sister and mother, 18 normal control subjects, and six other subjects with insulin resistance. To determine whether this mutation had functional consequences for receptor signalling, we reconstructed it into a full-length insulin receptor cDNA expression vector. Chinese hamster ovary cells were transfected with mutant cDNA, and the expressed insulin receptors were compared to receptors expressed by cells transfected with wild-type receptor cDNA. Both mutant and wild-type receptors were properly processed into receptor alpha- and beta-subunits, were expressed on the cell surface, and displayed similar insulin-binding affinity. In contrast, insulin-stimulated autophosphorylation of the mutant receptors was severely impaired, whether assessed in intact cells or with a partially purified receptor preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have studied insulin receptor-mediated signaling in Chinese hamster ovary (CHO) cell transfectants that expressed either of two naturally occurring mutant human insulin receptors: Trp1200----Ser1200 and Ala1134----Thr1134. Compared with overexpressed normal human insulin receptors, both mutant receptors displayed normal processing and normal binding affinity; however, neither was capable of detectable insulin-stimulated autophosphorylation or tyrosine kinase activity toward endogenous (pp185) or exogenous substrates. Several biologic actions of insulin were evaluated in transfected cells. Compared with neomycin-only transfected CHO cells (CHO-NEO), cells expressing normal receptors demonstrated increased insulin sensitivity for 2-deoxyglucose uptake, [14C]glucose incorporation into glycogen, [3H]thymidine incorporation into DNA, and specific gene expression (accumulation of glucose transporter GLUT-1 mRNA). Cells expressing either Ser1200 or Thr1134 receptors showed no increase in insulin-stimulated thymidine incorporation or GLUT-1 mRNA accumulation compared with CHO-NEO. Surprisingly, cells expressing Ser1200 receptors showed increased insulin stimulation of 2-deoxyglucose uptake and glucose incorporation into glycogen compared with CHO-NEO, whereas Thr1134 receptors failed to signal these metabolic responses. We conclude that 1) transfected kinase-deficient insulin receptor mutants derived from insulin-resistant patients have distinct defects in the ability to mediate insulin action in vitro; 2) divergence of insulin signaling pathways may occur at the level of the receptor; and 3) normal activation of the receptor tyrosine kinase by insulin is not necessarily required for signaling of certain important biologic actions.  相似文献   

3.
4.
We have determined the primary structure of a mutant insulin receptor of a leprechaun patient born from a consanguineous marriage. A characteristic feature of leprechaunism is an extreme resistance to insulin. In this patient the insulin resistance seems to result from an observed lack of insulin binding to intact cells. Solubilization of cells in non-ionic detergents leads to the appearance of insulin receptors which can bind insulin. However, the insulin-stimulated autophosphorylation of the receptor's beta subunit is markedly reduced. Cloning and sequencing of cDNA derived from insulin receptor mRNA of this patient revealed a leucine-to-proline mutation at position 233 in the alpha subunit. By means of DNA amplification we found that the patient is homozygous for this mutation and that the parents and two grandparents from the consanguineous line are heterozygous. The heterozygous individuals all show decreased insulin binding to cultured fibroblasts. In addition, they are mildly insulin resistant in vivo. These observations show a linkage between the leucine-to-proline mutation and the observed insulin resistance in this family. We therefore conclude that the mutation in the homozygous form is responsible for the extreme insulin resistance in the leprechaun patient. The mutation for the first time characterizes a region in the insulin receptor which seems to be involved in transmitting the insulin binding signal to the tyrosine kinase domain.  相似文献   

5.
The intracellular domain of the insulin receptor possesses activity as a tyrosine-specific protein kinase. The receptor tyrosine kinase is stimulated by insulin binding to the extracellular domain of the receptor. Previously, we have identified a patient with a genetic form of insulin resistance who is heterozygous for a mutation substituting Ile for Met1153 in the tyrosine kinase domain of the receptor near the cluster of the three major autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163). In this investigation, the Ile1153 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs receptor tyrosine kinase activity and also inhibits the ability of insulin to stimulate 2-deoxyglucose uptake and thymidine incorporation. These data support the hypothesis that the receptor tyrosine activity plays a necessary role in the ability of the receptor to mediate insulin action in vivo. Furthermore, expression of the Ile1153 mutant receptor exerted a dominant negative effect to inhibit the ability of endogenous murine receptors for insulin and insulin-like growth factor I to mediate their actions upon the cell. This observation is consistent with previous suggestions that mutant receptors dimerize with wild type receptors, thereby creating hybrid molecules which lack biological activity. The dominant negative effect of the mutant receptor may explain the dominant mode of inheritance of insulin resistance caused by the Ile1153 mutation. Finally, the mutation inhibits the ability of insulin to stimulate receptor endocytosis. This may explain the normal number of insulin receptors on the surface of the patient's cells in vivo. Despite the presence of markedly elevated levels of insulin in the patient's plasma, the receptors were resistant to down-regulation.  相似文献   

6.
Chinese hamster ovary (CHO) cell transfectants that expressed human insulin receptors whose glycine 996 was substituted by valine were studied. Receptor processing and insulin binding were unaffected by this mutation; however, this mutant insulin receptor had little or no tyrosine kinase activity. Nevertheless, the Val996 mutant exhibited seryl and threonyl phosphorylation in both the basal and insulin-stimulated state in intact cells. This is in contrast to the Lys----Ala1018 tyrosine kinase deficient mutant (Russell, D. S., Gherzi, R., Johnson, E. L., Chou, C-K., and Rosen, O. M. (1987) J. Biol. Chem. 262, 11833-11840). Cells expressing the normal human receptor were 10-fold more sensitive to insulin than the untransfected CHO cells with respect to phosphorylation of a cellular substrate (pp 185) on tyrosyl residues, glucose incorporation into glycogen, thymidine incorporation into DNA, and phosphorylation of ribosomal protein S6. Cells expressing the mutant receptor exhibited the same insulin sensitivity as the untransfected CHO cells. Insulin was rapidly internalized in cells expressing the normal human receptor and the number of receptors expressed on the cell surface was decreased in response to exposure to insulin. However, little insulin was internalized in cells expressing the mutant receptor, and the number of receptors on the cell surface was not significantly diminished in response to exposure to insulin. It is concluded that despite the occurrence of seryl and threonyl phosphorylations, post-receptor effects of insulin described above are not mediated by the tyrosine kinase-deficient receptor, Val996.  相似文献   

7.
Mutations in the tyrosine kinase domain of the insulin receptor cause insulin resistance in a dominant fashion. It has been proposed that formation of hybrid dimers between normal and mutant receptors may explain the dominant negative effect of these mutations. To investigate this mechanism, we expressed two types of human insulin receptors in NIH-3T3 cells; wild type and the tyrosine kinase-deficient Ile1153 mutant. To distinguish the two types of receptors, 43 amino acids were deleted from the C-terminus of the wild type receptor (delta 43 truncation). If mutant and wild type receptors assemble in a random fashion, 50% of the receptors would be hybrid oligomers (alpha 2 beta beta mut). However, alpha 2 beta beta mut hybrids were undetectable. Nevertheless, insulin stimulated the kinase competent delta 43 receptors to transphosphorylate the kinase-deficient Ile1153 mutant receptor in co-transfected cells via an intermolecular mechanism. Furthermore, transphosphorylation of the Ile1153 mutant receptor is sufficient to trigger insulin-stimulated endocytosis. Despite the absence of alpha 2 beta beta mut hybrids, expression of the Ile1153 mutant receptor inhibited the ability of the delta 43 truncated receptor to mediate insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1). Evidence is presented to support the hypothesis that the Ile1153 mutant receptor retains the ability to bind IRS-1, and that sequestration of substrate may explain the dominant negative effect of the mutant receptor to inhibit phosphorylation of IRS-1.  相似文献   

8.
Tyrosyl phosphorylation is implicated in the mechanism of insulin action. Mutation of the beta-subunit of the insulin receptor by substitution of tyrosyl residue 960 with phenylalanine had no effect on insulin-stimulated autophosphorylation or phosphotransferase activity of the purified receptor. However, unlike the normal receptor, this mutant was not biologically active in Chinese hamster ovary cells. Furthermore, insulin-stimulated tyrosyl phosphorylation of at least one endogenous substrate (pp185) was increased significantly in cells expressing the normal receptor but was barely detected in cells expressing the mutant. Therefore, beta-subunit autophosphorylation was not sufficient for the insulin response, and a region of the insulin receptor around Tyr-960 may facilitate phosphorylation of cellular substrates required for transmission of the insulin signal.  相似文献   

9.
We have recently characterized a mutant insulin receptor (Y/F2) in which the two tyrosines in the carboxyl terminus (Tyr1316, Tyr1322) were mutated to phenylalanine. Compared with wild type receptors, the Y/F2 receptor exhibited markedly enhanced sensitivity to insulin-stimulated DNA synthesis with normal insulin-stimulated glucose uptake (Takata, Y., Webster, N. J. G., and Olefsky, J. M. (1991) J. Biol. Chem. 266, 9135-9139). In this paper, we present further evidence for the divergence of the metabolic and mitogenic signaling pathways utilized by the insulin receptor. The mutant receptor showed normal sensitivity and responsiveness for insulin-stimulated glucose incorporation into glycogen. The insulin sensitivity for phosphorylation of two substrates (pp180 and pp220) was the same in both Y/F2 cells and HIRc cells. Phosphotyrosine content, however, was greater in Y/F2 cells than in HIRc cells, especially in the basal state. Insulin stimulated S6 kinase activity 2-6-fold, with an ED50 of -10 nM in Rat 1 cells and 0.5 nM in HIRc cells. The sensitivity to insulin was enhanced in Y/F2 cells with an ED50 of 0.1 nM. These effects were insulin-specific, since insulin-like growth factor (IGF)-I-stimulated mitogenesis was normal. In summary: 1) Y/F2 receptors exhibit normal metabolic and enhanced mitogenic signaling; 2) the enhanced mitogenic signaling is specific for the insulin receptor in the Y/F2 cells, since IGF-I-stimulated mitogenesis is normal; 3) Y/F2 cells display increased endogenous substrate phosphorylation and augmented insulin-stimulated S6 kinase activity placing these responses among insulin's mitogenic effects; and 4) these results are consistent with the concept that the COOH-terminal tyrosine residues of the insulin receptor are normally inhibitory to mitogenic signaling.  相似文献   

10.
Expression of the cDNA encoding a human insulin receptor with replacement of alanine for lysine at residue 1018 in the ATP binding domain of the beta subunit results in a receptor that is not only kinase-defective, but also biologically inactive. Interestingly, this mutated receptor shows a decreased insulin binding affinity when expressed at high level. We, therefore, studied the binding property of this mutant receptor expressed in Rat 1 fibroblasts. The association rate (Ka) of insulin to the mutant receptor was comparable to normal, but the dissociation rate (Kd) was twice as fast. Furthermore, the Kd of the mutant receptor was also more sensitive to changes in pH, accelerating more rapidly with pH changes than did the Kd of normal receptors. Despite this difference, the mutant receptor still exhibited negative cooperativity. These results indicate that the loss of tyrosine kinase activity of the beta subunit of the insulin receptor leads to alteration of the ligand binding affinity of the alpha subunit.  相似文献   

11.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

12.
The effect of insulin on pyruvate dehydrogenase activity was examined in two different cell types that over expressed either normal or defective human insulin receptors, RAT 1 embryonic fibroblasts and Chinese hamster ovary (CHO) cells. Insulin stimulated pyruvate dehydrogenase activity in cells that expressed normal insulin receptors (RAT 1 HIRc, and CHO-WT and CHO-T cells), or receptors in which lysine 1018 in the ATP-binding site of the tyrosine kinase domain was exchanged for alanine (RAT 1 A/K1018 and CHO-mut cells). For both rat and hamster cell lines, the insulin dose-response curves from cells that expressed the mutant receptors were identical to those from the appropriate controls that over expressed the normal insulin receptors. Insulin failed to stimulate pyruvate dehydrogenase activity in CHO-delta cells, which expressed a mutant human insulin receptor that was truncated by 112 amino acids at the carboxyl terminal of the beta chain. Control studies verified that all the cells used in this study exhibited the expected phenotypes with respect to the number of insulin receptors which they expressed, insulin-stimulated tyrosine kinase activity, and the biological consequences of inactivating the insulin receptor tyrosine kinase. These findings show that the insulin receptor tyrosine kinase does not play an obligatory role in the insulin signaling pathway that stimulates pyruvate dehydrogenase activity.  相似文献   

13.
To examine the role of the transmembrane domain (TM) of the insulin receptor in insulin-induced receptor kinase activation, we prepared four mutated insulin receptors: 1) a Val938----Asp substitution (IR/TMv----D), 2) insertion of a 3-amino acid repeat (Val938-Phe939-Leu940) (IR/TM+3), or the entire TM was replaced by the corresponding domain of either the 3) platelet-derived growth factor (PDGF) receptor (IR/TMPDGFR) or 4) c-neu/erbB2 proto-oncogene product (IR/TMc-neu). Each mutant receptor was stably expressed in Chinese hamster ovary cells, assessed by fluorescence-activated cell sorting, insulin binding, and biosynthetic labeling. All mutant receptors exhibited normal affinity for insulin. Pulse-chase experiments showed that each proreceptor was processed into alpha- and beta-subunits, although the rate of IR/TMV----D conversion was reduced approximately 3-fold. With IR/TMPDGFR, IR/TMV----D, and IR/TM+3 basal and insulin-stimulated levels of autophosphorylation and tyrosine kinase activation were normal, both in wheat germ agglutinin (WGA)-purified receptor preparations and intact cells. By contrast, following WGA purification or isolation of crude membranes, IR/TMc-neu was a constitutively active autokinase and substrate kinase in vitro. However, in intact cells insulin-stimulated autophosphorylation and kinase activity appeared normal. We conclude that although there is considerable latitude in acceptable structure, residues within the insulin receptor transmembrane domain can play a functional role in regulation of insulin receptor tyrosine kinase activity.  相似文献   

14.
We previously have demonstrated that intramolecular interactions between alpha beta-alpha beta subunits are necessary for insulin-dependent activation of the protein kinase domain within a single alpha 2 beta 2 heterotetrameric insulin-receptor complex (Wilden, P. A., Morrison, B. D., and Pessin, J. E. (1989) Biochemistry 28, 785-792). To evaluate the role of the beta subunit transmembrane domain in the insulin-dependent signalling mechanism, mutant human insulin receptors containing a series of nested transmembrane domain deletions (amino acids 941-945) were generated and stable Chinese hamster ovary-transfected cell lines were obtained. In addition, a substitution of Val-938 for Glu (E/V938) similar to the oncogenic mutation found in the neu transmembrane domain was also introduced into the insulin receptor. Scatchard analysis of insulin binding to the stable Chinese hamster ovary cell lines expressing either wild type or mutant insulin receptors indicated equivalent receptor number (2-4 x 10(6)/cell) and similar high affinity binding constants (Kd 0.1-0.3 nM). 125I-Insulin affinity cross-linking demonstrated that all of the expressed insulin receptors were assembled and processed into alpha 2 beta 2 heterotetrameric complexes. Surprisingly, all the mutant insulin receptors retained insulin-stimulated autophosphorylation both in vivo and in vitro. Furthermore, endogenous substrate phosphorylation in vivo as well as insulin-stimulated thymidine incorporation into DNA were unaffected by the transmembrane domain mutations. These data demonstrate that marked structural alterations in the insulin receptor transmembrane domain do not interfere with insulin-dependent signal transduction.  相似文献   

15.
Synthetic copolymers containing tyrosine residues were used to characterize the substrate specificity of the insulin receptor kinase and compare it to tyrosine kinases stimulated by epidermal growth factor, insulin-like growth factor-1 and phorbol ester. In partially purified receptor preparations from eight different tissues insulin best stimulated (highest V) phosphorylation of a random copolymer composed of glutamic and tyrosine residues at a 4:1 ratio (Glu/Tyr, 4:1). The insulin-stimulated phosphorylation of this polymer was highly significant also in receptor preparations from fresh human monocytes, where insulin binding and autophosphorylation were difficult to detect. Other tyrosine-containing polymers Ala/Glu/Lys/Tyr (6:2:5:1) and Glu/Ala/Tyr (6:3:1) were also phosphorylated by the insulin-stimulated kinase but to a lower extent. A tyrosine kinase stimulated by insulin-like growth factor-1, and one stimulated by phorbol ester also best phosphorylated the polymer Glu/Tyr (4:1). The three kinases differed only in their capability to phosphorylate Glu/Ala/Tyr (6:3:1) or Ala/Glu/Lys/Tyr (6:2:5:1). Glu/Tyr (4:1) was a poor substrate for the epidermal growth factor receptor kinase which best phosphorylated the polymer Glu/Ala/Tyr (6:3:1). Three additional polymers: Glu/Tyr (1:1), Glu/Ala/Tyr (1:1:1), and Lys/Tyr (1:1) failed to serve as substrates for all four tyrosine kinases tested. Taken together these findings suggest that. Hormone-sensitive tyrosine kinases have similar yet distinct substrate specificity and are likely to phosphorylate their native substrates on tyrosines adjacent to acidic (glutamic) residues. Tyrosine-containing polymer substrates are highly sensitive and convenient tools to study (hormone-sensitive) tyrosine kinases whose native substrates are unknown or present at low concentrations.  相似文献   

16.
The role of specific tyrosine autophosphorylation sites in the human insulin receptor kinase domain (Tyr1158, Tyr1162, and Tyr1163) was analyzed using in vitro mutagenesis to replace tyrosine residues individually or in combination. Each of the three single-Phe, the three possible double-Phe a triple-Phe and a triple-Ser mutant receptors, stably expressed in Chinese hamster ovary cells, were compared with the wild-type receptor in their ability to mediate stimulation of receptor kinase activity, glycogen synthesis, and DNA synthesis by insulin or the human-specific anti-receptor monoclonal antibody 83-14. At a concentration of 0.1 nM insulin which produced approximately half-maximal responses with wild-type receptor, DNA synthesis and glycogen synthesis mediated by the three single-Phe mutants ranged from 52 to 88% and from 32 to 79% of the wild-type receptor, respectively. The corresponding figures for the double-Phe mutants averaged 15 and 6%, whereas the triple-mutants were unresponsive in both assays. The level of biological function approximately paralleled the insulin-stimulated tyrosine kinase activity in the intact cell as estimated by tyrosine phosphorylation of the insulin receptor and its endogenous substrate pp 185/IRS-1. Interestingly, all mutants showed a marked decrease in insulin-stimulated receptor internalization. Anti-receptor antibody stimulated receptor kinase activity and mimicked insulin action in these cells. In general, the impairment of the metabolic response was greater and impairment of the growth response was less when antibody was the stimulus. These experiments show that the level and specific sites of autophosphorylation are critical determinants of receptor function. The data are consistent with a requirement for the receptor tyrosine kinase either as an obligatory step or a modulator, in both metabolic and growth responses, and demonstrate the important role of the level of insulin receptor kinase domain autophosphorylation in regulating insulin sensitivity.  相似文献   

17.
We have studied the function of a mutant human insulin receptor in which two COOH-terminal autophosphorylation sites (Tyr-1316 and -1322) were replaced by phenylalanine (F/Y COOH-terminal 2 tyrosines (CT2)). In addition, we have also constructed a mutant receptor in which Lys-1018 in the ATP-binding site was changed to arginine (R/K 1018). Both the wild type insulin receptor (HIR) and the mutant receptors were expressed in Chinese hamster ovary (CHO) cells by stable transfection. Autophosphorylation of solubilized and partially purified F/Y CT2 was decreased by approximately 30% compared with the HIR. Tyrosine kinase activities of F/Y CT2 and HIR toward exogenous substrates were almost equal. When CHO cells transfected with F/Y CT2 (CHO-F/Y CT2) were stimulated with insulin, autophosphorylation of the beta-subunit of the insulin receptor and the phosphorylation of an endogenous substrate (pp185) in the intact cell were normal compared with cells expressing HIR (CHO-HIR). CHO-F/Y CT2 exhibited the same insulin sensitivity as CHO-HIR with respect to 2-deoxyglucose uptake. However, the dose-response curve of insulin-stimulated thymidine incorporation in CHO-F/Y CT2 was shifted to the left (approximately 5-7-fold) compared with that in CHO-HIR. There was no significant difference in insulin-like growth factor 1-stimulated thymidine incorporation between CHO-F/Y CT2 and CHO-HIR. Furthermore, the dose-response curve of insulin-stimulated kinase activity toward myelin basic protein in CHO-F/Y CT2 was also shifted to the left (approximately 5-fold) compared with that in CHO-HIR. Kinase assays in myelin basic protein-containing gels revealed that both species of MAP kinases (M(r) 44,000, 42,000) were more sensitive to activation by insulin in CHO-F/Y CT2 than in CHO-HIR. This observation was confirmed in immune complex kinase assays toward microtubule-associated protein 2 (MAP2) using specific antibodies against mitogen-activated protein (MAP) kinase. R/K 1018 mutant insulin receptors showed an absence of insulin-stimulated kinase activity and CHO cells transfected with R/K 1018 (CHO-R/K 1018) failed to enhance 2-deoxyglucose uptake or thymidine incorporation in response to insulin. In addition, R/K 1018 kinase-defective insulin receptors were unable to mediate insulin-stimulated MAP kinase activation. These data suggest that: 1) tyrosine kinase activity of the insulin receptor is required for activation of insulin-stimulated MAP kinases and 2) phosphorylation of COOH-terminal tyrosine residues may play an inhibitory role in mitogenic signaling through regulation of MAP kinases.  相似文献   

18.
We have previously shown that a homozygous mutation encoding a substitution of proline for leucine at position 233 in the insulin receptor is linked with the syndrome of leprechaunism, being a lethal form of insulin resistance in newborn children. Specific binding of insulin and insulin-stimulated autophosphorylation of the insulin receptor are nearly absent in fibroblasts from the leprechaun patient. To examine the molecular basis of the observed insulin receptor abnormalities, CHO cell lines overexpressing mutant insulin receptors were made by transfection. The results show that the mutation inhibits cleavage and transport of the proreceptor from intracellular sites to the cell surface. As the mutant receptor is poorly precipitated by two different monoclonal antibodies recognizing epitopes on undenatured wild-type alpha-subunits, the mutation probably affects overall folding of the alpha-subunit. The mutant proreceptor is unable to bind insulin and exhibits no insulin-stimulated autophosphorylation. These data explain the abnormalities seen in the patient's fibroblasts. Pulse-chase labeling experiments on transfected cells show that the mutant precursor has an extended half-life (approximately 5 h) compared to the precursor of wild-type insulin receptors (approximately 2 h). This mutation is the first example of a naturally occurring mutation in the insulin receptor which completely blocks cleavage of the proreceptor and transport to the cell surface.  相似文献   

19.
Molecular genetics of severe insulin resistance   总被引:2,自引:0,他引:2  
Leprechaunism and type A diabetes represent inborn errors of insulin resistance whose phenotypes suggested causation by mutations in the insulin receptor gene. Cells cultured from patients with leprechaunism specifically lacked high-affinity insulin binding. Partial but different degrees of impairment were observed in cells cultured from first-degree relatives. Different mutations in the insulin receptor's alpha subunit were proposed in different families (Ark-1, Atl, Minn, Mount Sinai) based on phenotype, cellular insulin binding, and insulin receptor structure. Molecular cloning and sequencing of mutant insulin receptor cDNA from family Ark-1 confirmed that the proband inherited a maternal missense and a paternal nonsense mutation in the alpha subunit and was a compound heterozygote. The insulin receptor was immunologically present on the plasma membrane of fibroblasts cultured from patients Ark-1 and Atl but was markedly reduced in cells from patients Minn and Mount Sinai. In cells from patient Minn, but not from patient Mount Sinai, the decreased number of insulin receptors was associated with reduced insulin receptor mRNA. In two families with the less severe form of insulin resistance, type A diabetes, mutations altered post-translational processing of the insulin receptor molecule. At a cellular level, these mutations of the alpha subunit of the insulin receptor shared defective binding and impaired stimulation of sugar transport by insulin. In family Atl, however, glucose uptake was constitutively increased. Thus, genetic variation in the insulin receptor gene causes a spectrum of inherited insulin-resistant syndromes and altered cellular signaling.  相似文献   

20.
We have studied the phosphatidylinositol 3-kinase (PtdIns 3-kinase) in insulin-stimulated Chinese hamster ovary (CHO) cells expressing normal (CHO/IR) and mutant human insulin receptors. Insulin stimulation of CHO/IR cells results in an increase in PtdIns 3-kinase activity associated with anti-phosphotyrosine (alpha PY) immunoprecipitates, which has been previously shown to correlate with the in vivo production of PtdIns(3,4)P2, and PtdIns(3,4,5)P3 (Ruderman, N., Kapeller, R., White, M.F., and Cantley, L.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415). Stimulation was maximal within 1 min and showed a dose response identical to that of insulin receptor autophosphorylation. The PtdIns 3-kinase also associated with the insulin receptor in an insulin-stimulated manner, as approximately 50% of the total alpha PY-precipitable activity could be specifically immunoprecipitated with anti-insulin receptor antibody. Mutant insulin receptors displayed variable ability to stimulate the PtdIns 3-kinase, but in all cases the presence of PtdIns 3-kinase in alpha PY immunoprecipitates correlated closely with the tyrosyl phosphorylation of the endogenous substrate pp185. In CHO cells expressing a kinase-deficient mutant (IRA1018), there was no observable insulin stimulation of PtdIns 3-kinase activity in alpha PY immunoprecipitates and no tyrosyl phosphorylation of pp185. Substitution of Tyr1146 in the insulin receptor regulatory region with phenylalanine partially impaired receptor autophosphorylation, pp185 phosphorylation, and insulin-stimulated increases in alpha PY-precipitable PtdIns 3-kinase activity. In contrast, a deletion mutant lacking 12 amino acids from the juxtamembrane region (IR delta 960) displayed normal in vivo autophosphorylation but failed to stimulate the PtdIns 3-kinase or phosphorylate pp185. Finally, a mutant receptor from which the C-terminal 43 amino acids had been deleted (IR delta CT) exhibited normal insulin-stimulated autophosphorylation, pp185 phosphorylation, and stimulation of the PtdIns 3-kinase activity in alpha PY immunoprecipitates. These data suggest that the PtdIns 3-kinase is itself a substrate of the insulin receptor kinase or associates preferentially with a substrate. A comparison of the biological activities of the mutant receptors with their activation of the PtdIns 3-kinase furthermore suggests that the PtdIns 3-kinase may be linked to insulin's ability to regulate DNA synthesis and cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号