首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ercc1 is essential for nucleotide excision repair (NER) but, unlike other NER proteins, Ercc1 and Xpf are also involved in recombination repair pathways. Ercc1 knockout mice have profound cell cycle abnormalities in the liver and die before weaning. Subsequently Xpa and Xpc knockouts have proved to be good models for the human NER deficiency disease, xeroderma pigmentosum, leading to speculation that the recombination, rather than the NER deficit is the key to the Ercc1 knockout phenotype. To investigate the importance of the recombination repair functions of Ercc1 we studied spermatogenesis and oogenesis in Ercc1-deficient mice. Male and female Ercc1-deficient mice were both infertile. Ercc1 was expressed at a high level in the testis and the highest levels of Ercc1 protein occurred in germ cells following meiotic crossing over. However, in Ercc1 null males some germ cell loss occurred prior to meiotic entry and there was no evidence that Ercc1 was essential for meiotic crossing over. An increased level of DNA strand breaks and oxidative DNA damage was found in Ercc1-deficient testis and increased apoptosis was noted in male germ cells. We conclude that the repair functions of Ercc1 are required in both male and female germ cells at all stages of their maturation. The role of endogenous oxidative DNA damage and the reason for the sensitivity of the germ cells to Ercc1 deficiency are discussed.  相似文献   

2.
ERCC1 (excision repair cross complementing‐group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross‐link repair. Ercc1?/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1?/Δ mice display combined features of human progeroid and cancer‐prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1?/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1?/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1?/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence‐associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor‐suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1‐deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1?/Δ mouse skin, where the apoptotic cells are localized, compared to age‐matched wild‐type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1‐depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health‐ or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.  相似文献   

3.
4.
5.
The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1-/- mice was compared to that in young and old wild-type mice. Ercc1-/- mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1-/- mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa-/- mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging.  相似文献   

6.
Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ0) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.  相似文献   

7.
The ERCC1 gene is essential for the repair of UV-induced DNA damage. Unlike most genes in the nucleotide excision repair (NER) pathway, ERCC1 is also involved in recombinational repair. Perhaps for this reason, ERCC1 knockout mice are not a model for the human NER deficiency disorder, xeroderma pigmentosum. Instead, ERCC1 null mice are severely runted and die before weaning from liver failure with accelerated hepatocyte polyploidy that is more reminiscent of a premature ageing disorder. To permit study of the role of ERCC1 in other tissues we have corrected the liver ERCC1 deficiency with a transgene under the control of a liver-specific promoter. The transgene alleviated runting and extended the lifespan. The elevated level of oxidative DNA damage and premature liver polyploidy were reversed and liver function was corrected. A widespread mitochondrial dysfunction was identified and an essential role for ERCC1 in the kidney was also revealed with transgene-containing ERCC1-deficient animals going on to die of renal failure. The nuclei of kidney proximal tubule cells became polyploid in a similar way to the premature liver polyploidy observed in younger ERCC1-deficient animals. We believe that this is a response to the accumulation of endogenous DNA damage in these particularly susceptible tissues which cannot be repaired in ERCC1-deficient animals.  相似文献   

8.
9.
10.
11.
12.
The ERCC1/XPF complex is responsible for incision at the 5' side of the lesion during nucleotide excision repair and is also involved in homologous recombination and interstrand cross-link repair. The aim of the current study was to set up a better model for examination of Ercc1 deficiency in the murine liver and to determine the DNA lesions responsible for the premature polyploidy observed. We used the Cre/lox system with an adenovirus carrying Cre recombinase to conditionally induce Ercc1 deficiency in murine hepatocytes in vitro. Increased levels of apoptosis were apparent in our Ercc1-deficient cultures, both spontaneously and after UV irradiation and oxidative DNA damage. Increased apoptosis was also observed in simple Ercc1-deficient livers and the time course of the development of polyploidy was characterised. Livers from simple Ercc1 knockout mice contained mitochondria with disrupted outer membranes. Lipid accumulation was observed in older Ercc1-deficient hepatocyte cultures and in young Ercc1-deficient and wild-type livers. Lipids disappeared from the wild-type livers with age, but persisted in Ercc1-deficient livers, suggesting that a reduced ability to repair oxidative DNA damage and a malfunction of oxidative pathways could be responsible for the Ercc1-deficient liver phenotype. Real-time RT-PCR was used to determine differences in expression of cell cycle regulation and survival genes between Ercc1-deficient and control livers. Higher mRNA levels of Igfbp2, a possible marker for polyploidy, and p21 were detected in Ercc1-deficient livers. The pro-apoptotic factor, Bax, showed increased levels of mRNA expression in young Ercc1-deficient livers. However, no elevation in the levels of reactive oxygen species, or of malondialdehyde DNA adducts, a product of oxidative DNA damage, were found in Ercc1-deficient liver and no elevated levels of genes involved in the oxidative damage response were seen.  相似文献   

13.
14.
BRCA1 is a checkpoint and DNA damage repair gene that secures genome integrity. We have previously shown that mice lacking full-length Brca1 (Brca1(delta11/delta11)) die during embryonic development. Haploid loss of p53 completely rescues embryonic lethality, and adult Brca1(delta11/delta11)p53+/- mice display cancer susceptibility and premature aging. Here, we show that reduced expression and/or the absence of Chk2 allow Brca1(delta11/delta11) mice to escape from embryonic lethality. Compared to Brca1(delta11/delta11)p53+/- mice, lifespan of Brca1(delta11/delta11)Chk2-/- mice was remarkably extended. Analysis of Brca1(delta11/delta11)Chk2-/- mice revealed that p53-dependent apoptosis and growth defect caused by Brca1 deficiency are significantly attenuated in rapidly proliferating organs. However, in later life, Brca1(delta11/delta11)Chk2-/- female mice developed multiple tumors. Furthermore, haploid loss of ATM also rescued Brca1 deficiency-associated embryonic lethality and premature aging. Thus, in response to Brca1 deficiency, the activation of the ATM-Chk2-p53 signaling pathway contributes to the suppression of neoplastic transformation, while leading to compromised organismal homeostasis. Our data highlight how accurate maintenance of genomic integrity is critical for the suppression of both aging and malignancy, and provide a further link between aging and cancer.  相似文献   

15.
Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.  相似文献   

16.
17.
18.
19.
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.  相似文献   

20.
8-Oxoguanine is one of the major premutagenic oxidative base legions in vivo and is suspected to play a crucial role in various pathophysiological processes, such as cancer and aging. Mammalian 8-oxoguanine DNA glycosylase (OGG1) is thought to play a major role in the removal of 8-oxoguanine adducts in vivo. We have identified several inbred mouse strains with a spontaneous mutation, OGG1-R336H or double mutations, OGG1-R304W/R336H. R304W mutation caused a complete loss of OGG1 activity, while the R336H mutation led to disruption of nuclear localization of the enzyme although the activity remained normal. Among the double mutants was SAMP1, which exhibits accelerated senescence and short lifespan. We assessed the possible implication of the mutant OGG1 and 8-oxoguanine in aging utilizing SAMP1 mice. SAMP1 retained 1.5- to 1.9-fold increase in 8-oxoguanine level of hepatic nuclear DNA as compared with normal mice, until at least 12 months of age. A genetic association study, however, indicated that the mutant Ogg1 gene per se is not responsible for the accelerated senescence and short lifespan of SAMP1. Mutant OGG1 may be associated with pathologic conditions in other mouse strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号