首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Myogenesis is currently investigated in a number of invertebrate taxa using combined techniques, including fluorescence labeling, confocal microscopy, and 3D imaging, in order to understand anatomical and functional issues and to contribute to evolutionary questions. Although developmental studies on the gross morphology of bivalves have been extensively pursued, organogenesis including muscle development has been scarcely investigated so far. The present study describes in detail myogenesis in the scallop Nodipecten nodosus (Linnaeus, 1758) during larval and postmetamorphic stages by means of light, electron, and confocal microscopy. The veliger muscle system consists of an anterior adductor muscle, as well as four branched pairs of striated velum retractors and two pairs of striated ventral larval retractors. The pediveliger stage exhibits a considerably elaborated musculature comprising the velum retractors, the future adult foot retractor, mantle (pallial) muscles, and the anterior and posterior adductors, both composed of smooth and striated portions. During metamorphosis, all larval retractors together with the anterior adductor degenerate, resulting in the adult monomyarian condition, whereby the posterior adductor retains both myofiber types. Three muscle groups, i.e., the posterior adductor, foot retractor, and pallial muscles, have their origin prior to metamorphosis and are subsequently remodeled. Our data suggest a dimyarian condition (i.e., the presence of an anterior and a posterior adductor in the adult) as the basal condition for pectinids. Comparative analysis of myogenesis across Bivalvia strongly argues for ontogenetic and evolutionary independence of larval retractors from the adult musculature, as well as a complex set of larval retractor muscles in the last common bivalve ancestor.  相似文献   

2.

Background

The shipworm Lyrodus pedicellatus is a wood-boring bivalve with an unusual vermiform body. Although its larvae are brooded, they retain the general appearance of a typical bivalve veliger-type larva. Here, we describe myogenesis of L. pedicellatus revealed by filamentous actin labelling and discuss the data in a comparative framework in order to test for homologous structures that might be part of the bivalve (larval) muscular ground pattern.

Results

Five major muscle systems were identified: a velum retractor, foot retractor, larval retractor, a distinct mantle musculature and an adductor system. For a short period of larval life, an additional ventral larval retractor is present. Early in development, a velum muscle ring and an oral velum musculature emerge. In late stages the lateral and dorsal mantle musculature, paired finger-shaped muscles, an accessory adductor and a pedal plexus are formed. Similar to other bivalve larvae, L. pedicellatus exhibits three velum retractor muscles, but in contrast to other species, one of them disappears in early stages of L. pedicellatus. The remaining two velum retractors are considerably remodelled during late larval development and are most likely incorporated into the elaborate mantle musculature of the adult.

Conclusions

To our knowledge, this is the first account of any larval retractor system that might contribute to the adult bodyplan of a (conchiferan) mollusk. A comparative analysis shows that a pedal plexus, adductors, a larval velum ring, velum retractors and a ventral larval retractor are commonly found among bivalve larvae, and thus most likely belong to the ground pattern of the bivalve larval musculature.
  相似文献   

3.
Glanidium melanopterum Miranda Ribeiro, a typical representative of the subfamily Centromochlinae (Siluriformes: Auchenipteridae), is herein described myologically and compared to other representative species within the group, Glanidium ribeiroi, G. leopardum, Tatia neivai, T. intermedia, T. creutzbergi, Centromochlus heckelii, and C. existimatus. The structure of seven pairs of striated cephalic muscles was compared anatomically: adductor mandibulae, levator arcus palatini, dilatator operculi, adductor arcus palatini, extensor tentaculi, retractor tentaculi, and levator operculi. We observed broad adductor mandibulae muscles in both Glanidium and Tatia, catfishes with depressed heads and smaller eyes. Similarities between muscles were observed: the presence of a large aponeurotic insertion for the levator arcus palatini muscle; an adductor arcus palatini muscle whose origin spread over the orbitosphenoid, pterosphenoid, and parasphenoid; and the extensor tentaculi muscle broadly attached to the autopalatine. There is no retractor tentaculi muscle in either the Glanidium or Tatia species. On the other hand, in Centromochlus, with forms having large eyes and the tallest head, the adductor mandibulae muscles are slim; there is a thin aponeurotic or muscular insertion for the levator arcus palatini muscle; the adductor arcus palatini muscle originates from a single osseous process, forming a keel on the parasphenoid; the extensor tentaculi muscle is loosely attached to the autopalatine, permitting exclusive rotating and sliding movements between this bone and the maxillary. The retractor tentaculi muscle is connected to the maxilla through a single tendon, so that both extensor and retractor tentaculi muscles contribute to a wide array of movements of the maxillary barbels. A discussion on the differences in autopalatine-maxillary movements among the analyzed groups is given.  相似文献   

4.
By combining phalloidin‐TRITC staining with confocal scanning laser microscopy (CSLM), the pattern of the musculature in two species of Rotifera, Euchlanis dilatata unisetata and Brachionus quadridentatus is revealed. The same general muscle pattern prevails in both species. The major components of the body wall musculature are: 1. retractor muscles (5 pairs in E. dilatata unisetata and 3 pairs in B. quadridentatus); 2. Two pairs of dorso‐ventral muscles; 3. Two pairs of perpendicular muscles (in E. dilatata unisetata); 4. retractors of the corona (median, lateral and ventral); 5. Foot retractors. In addition, three pairs of cutaneo‐visceral muscles and visceral muscles (including mastax muscles) are described. The sphincter of the corona was found only in B. quadridentatus. The high degree of muscle differentiation points to a high level of development of rotifer muscular system.  相似文献   

5.
During the early development of Pecten maximus, the prototrochof the trochophore becomes the rim of the velum of the veliger.The prototroch consists of a tract of randomly-distributed cilia,but in the veliger an ordered pattern of ciliation with somecompound cilia develops. The thin epithelium connecting thevelum to the body of the larva bears no cilia, nor does theupper surface of the velum (except for an apical tuft); themuch thicker epithelium of the velum rim, however, is profuselyciliated. The cilia are arranged in five bands or rings eachextending round the rim of the velum. The ring closest to theupper (i.e. ventral) surface of the velum is the inner preoralring of single cilia. Below this are two rings of much longercilia grouped to form blade-shaped cirri, which each consistof 2 or 3 rows of 10-15 cilia. The cilia substructures indicatethat the direction of active beat of the cirrus is along theaxis of the rows. This beating generates the main swimming current.The energy demands of beating are reflected in the numerouslarge mitochondria in the cells bearing the cirri. Nerve processesin the velum may control beating. Below the cirri are an adoraltract of shorter cilia and then a ring of postoral cilia. Thevelum anatomy is that of a typical bivalve veliger, but somefeatures distinguish Pecten maximus from other bivalves. Theonfiguration of the bands of cilia and the orientation of theirbeating suggest that the veliger captures food particles bythe ‘opposed band’ method. This configuration islikely to be homologous with those of other spiralian larvae. *Present address: School of Biological Scrences, PortsmouthPolytechnic, King Henry I Street, Portsmouth, PO1 2DY, U.K. (Received 30 September 1988; accepted 1 December 1988)  相似文献   

6.
The jaw apparatus, or lantern, of sea-urchins contains five pairs of retractor and protractor muscles which are responsible for lantern displacement. Using intact retractor or protractor groups, the force-length relations of these muscles were compared in two taxonomically distant species, Paracentrotus lividus and Stylocidaris affinis. The total contractile forces generated by the muscles can be resolved into vertical and horizontal components. It was found that the vertical component of the retractors is maximal at a lantern position which is significantly lower (i.e. more protruded) in Paracentrotus than in Stylocidaris. Total forces generated by the retractors were in both species maximal at or above the lantern `resting positions'. In Paracentrotus alone, the total force-displacement curves tended to be bimodal. It is hypothesized that the retractors of Paracentrotus contain two populations of muscle fibres, one adapted for jaw opening and one for lantern retraction. No significant differences in the properties of the protractors of the two species could be identified. The lantern of Paracentrotus is more mobile than that of Stylocidaris and is able to exploit a wider range of food sources. This investigation has shown that the force-length relations of the lantern muscles match their differing working conditions. Accepted: 3 November 1997  相似文献   

7.
By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunodiffusion, we identified paramyosin in two smooth invertebrate "catch" muscles (Mytilus anterior byssus retractor and Mercenaria opaque adductor) and five invertebrate striated muscles (Limulus telson levator, Homarus claw muscle, Balanus scutal depressor, Lethocerus air tube retractor, and Aequipecten striated adductor). We show that (a) the paramyosins in all of these muscles have the same chain weights and (b) they are immunologically similar. We stained all of these muscles with specific antibody to Limulus paramyosin using the indirect fluorescent antibody technique. Paramyosin was localized to the A bands of the glycerinated striated muscles, and diffus fluorescence was seen throughout the glycerinated fibers of the smooth catch muscles. The presence of paramyosin in Homarus claw muscle, Balanus scutal depressor, and Lethocerus air tube retractor is shown here for the first time. Of the muscles in this study, Limulus telson levator is the only one for which the antiparamyosin staining pattern has been previously reported.  相似文献   

8.
The structure and fate of transitory larval organs (velum, shell, operculum, retractor muscles, part of the epidermis) of Phestilla sibogae Bergh were studied before, during, and after metamorphosis with both light and electron microscopy to elucidate the morphology of these organs and the mechanisms by which they are lost.Loss of the velar lobes is the first morphological sign of metamorphosis, and involves selective dissociation and subsequent ingestion of the ciliated velar cells; the remaining aggregate of supportive cells is apparently incorporated into cephalic epidermis. Attachment of the larval body to shell and operculum is primarily at sites of retractor muscle insertions; once the velum is gone, the attachment between shell and larval body is lost and the shell is cast off as the visceral organs exit through the shell aperture. Merger of visceral and cephalopedal elements results in flattening of the postlarval body and reorientation of internal organs. Simultaneously, a rapid spreading of epipodial epidermis over the lateral, dorsal, and posterior sides of the body produces the definitive integument. The squamous cells which comprise the larval perivisceral epidermis are pushed ahead of the definitive epidermis and are seen shortly after the shell is cast as a constricted aggregate of cells on the posterior end of the body. Autolysis of the left and right retractor muscles begins during metamorphosis and no trace of them is left after 24 to 48 h. The metapodial mucous glands which hypertrophy before metamorphosis are also lost within 48 h following exit of the post larva from the shell. Metamorphosis produces a detorsion caused in part by muscular action and in part by continuing growth and development.  相似文献   

9.
The musculature of larvae of Gordius aquaticus was investigated by laser-scanning microscopy and compared to transmission electron microscopic data for the larva of Paragordius varius. In the anterior portion of the body, the preseptum, four different muscle groups can be distinguished: (1) 12 anterior parietal muscles in the body wall, (2) six oblique muscles that function as retractors of the introvert, (3) six proboscideal muscles, which function as retractors for the proboscis, and (4) six muscles associated with spines of the outermost of the three rings of spines. The posterior portion of the body, the postseptum, possesses four pairs of longitudinal muscle strands in G. aquaticus, the postseptal parietal muscles, that are located dorsolaterally and ventrolaterally. These are not clearly visible in P. varius, where instead three pairs of parietal muscles are present. Additional small muscles are associated with the terminal spines and with the duct running from the pseudointestine to the body wall. All fibers show a cross-striated pattern although this striation is less obvious at the ends of the fibers.  相似文献   

10.
Whole-mounts of Philodina sp., a bdelloid rotifer, were stained with fluorescent-labeled phalloidin to visualize the musculature. Several different muscle types were identified including incomplete circular bands, coronal retractors and foot retractors. Based on the position of the larger muscle bands in the body wall, their function during creeping locomotion and tun formation was inferred. Bdelloid creeping begins with the contraction of incomplete circular muscle bands against the hydrostatic pseudocoel, resulting in an anterior elongation of the body. One or more sets of ventral longitudinal muscles then contract bringing the rostrum into contact with the substrate, where it presumably attaches via adhesive glands. Different sets of ventral longitudinal muscles, foot and trunk retractors, function to pull the body forward. These same longitudinal muscle sets are also used in `tun' formation, in which the head and foot are withdrawn into the body. Three sets of longitudinal muscles supply the head region (anterior head segments) and function in withdrawal of the corona and rostrum. Two additional pairs of longitudinal muscles function to retract the anterior trunk segments immediately behind the head, and approximately five sets of longitudinal retractors are involved in the withdrawal of the foot and posterior toes. To achieve a greater understanding of rotifer behavior, it is important to elucidate the structural complexity of body wall muscles in rotifers. The utility of fluorescently-labeled phalloidin for the visualization of these muscles is discussed and placed in the context of rotifer functional morphology.  相似文献   

11.
Comparative study of somatic musculature in illoricate rotifer Asplanchina girodi Guerne, 1888 and loricate Trichotria pocillum (Müller, 1776) has been carried out by the method of phalloidin fluorescence and confocal laser scanning microscopy. Similar layering of muscles is revealed, while significant differences are observed in other aspects. Postcoronal transverse muscle of A. girodi and the dorsal portion of the anterior circular muscle of T. pocillum serve as attachment sites for the refractor muscles. All retractors are formed by smooth muscles or striated muscles, except the lateral retractors of A. girodi, which are formed by the most powerful oblique muscles. In A. girodi there are three pairs of retractors, ten longitudinal muscles, and five circular muscles, with a thick muscular plexus connecting them. In T. pocillum there are four pairs of retractors, five transverse muscles, strong foot retractors, and an arched structure of the head region (new for rotifers). Eight pairs of dorsoventral muscles, as identified in T. pocillum, are completely absent in A. girodi.  相似文献   

12.
The separated shell plates with the rearranged musculature (adductor muscle) is a novelty for bivalves. Despite its importance in the bivalve bodyplan, the development of the anterior adductor muscle remains unresolved. In this study, we investigate the myogenesis of the bivalve species Septifer virgatus to reveal the developmental origin of the larval muscles in bivalves, focusing on the anterior adductor muscle. We observed that larval retractor muscles are differentiated from the ectomesoderm in bivalves, and that the anterior adductor muscles are derived from primordial larval retractor muscles via segregation of the myoblast during the veliger larval stage. Through the comparative study of myogenesis in bivalves and its related taxa, gastropods, we found that both species possess myoblasts that emerge bilaterally and later meet dorsally. We hypothesize that these myoblasts, which are a major component of the main larval retractor in limpets, are homologous to the anterior adductor muscle in bivalves. These observations imply that the anterior adductor muscle of bivalves evolved as a novel muscle by modifying the attachment sites of an existing muscle.  相似文献   

13.
Scaphopoda possess one or two pairs of dorsoventral muscles.At the level of the diaphragm between the intestinal and theperianal sinus these muscles divide into a latero-dorsal portionand a medio-ventral portion. The entire medio-ventral portionand the ventral parts of the latero-dorsal portion form thepedal longitudinal musculature. This is the general patternin both orders, Dentaliida and Gadilida. In Gadilida exceptthe family Entalinidae, these muscle portions are reduced comparedto an additional pair of central pedal retractor muscles. Themusculature of the pedal wall is four-layered: outer circularmuscles, two layers of helical muscles, and inner longitudinalmuscles. Because of differences in the organization of the musculature,the foot consists of three functional units: a pedal base, amiddle piece, and an anchoring organ. In the dentalud foot,all of the longitudinal muscles are in contact with the pedalwall. In the Entalinidae, three or four pairs of central retractormuscles become free of the pedal wall at the base of the middlepiece. In all other Gadilida the two central retractors arecontinuous from the dorsoventral muscles into the anchoringorgan. The elongation of the foot is purely hydraulic in Gadilida.In Dentaliida, however, the principles of hydraulic and muscular-hydrostatsare combined. (Received 17 July 1991; accepted 28 October 1991)  相似文献   

14.
By quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, paramyosin:myosin heavy chain molecular ratios were calculated for three molluscan muscles:Aequipecten striated adductor, Mercenaria opaque adductor, and Mytilus anterior byssus retractor; and four arthropodan muscles:Limulus telson, Homarus slow claw. Balanus scutal depressor, and Lethocerus air tube retractor. These ratios correlate positively with both thick filament dimensions and maximum active tension development in these tissues. The role of paramyosin in these muscles is discussed with respect to the following characteristics: force development, "catch," and extreme reversible changes in length.  相似文献   

15.
Musculature of two species of rotifers Testudinella patina (Testudinellidae) and Platyias patulus (Brachiomidae) was studied in confocal laser scanning microscope (CLSM) using fluorescent-labeled phalloidin. It includes cutaneous, visceral, and cutaneus-visceral musculature. The common pattern of structure of the cutaneous musculature is represented by postcoronal circular or transverse muscles and connected with them 2–3 pairs of retractors of the trunk, dorsolateral muscles (17-4), two pairs or bundles of lateral retractors of the corona, circular muscles of the foot, and 10-2 retractors of the foot. Visceral musculature includes muscles of the mastax of both kinds. Spiral-like muscle of cloaca of the T. patina and associated with it V-shaped one as well as strong dorsolateral retractors consisting of 6 longitudinal muscle bundles are typical of Testudinellidae only. Three pairs of cutaneus-visceral muscles bind the musculature of mastax with the body surface in T. patina. Differences in localization and thickness of some elements of musculature of these species are determined by morphological peculiarities of structure of the corona, mastax, and foot, as well as by the rotifer body shape.  相似文献   

16.
Siluroids are characterized by the presence of a palatine-maxillary mechanism, which enables a controlled mobility of the maxillary barbels. In Clarias gariepinus , the ontogeny of this mechanism is studied and described as well as those muscles related to the maxillary barbel. Two muscles are distinguished: (1) retractor tentaculi , connecting the maxilla to the suspensorium, and (2) extensor tentaculi , running from the ventro-lateral face of the skull to the posterior half of the palatine. These typical catfish muscles are derived from muscles that are present in generalized teleost fishes. The retractor muscle is believed to be derived from the A3 muscle of the adductor mandibulae complex. The extensor muscle is formed from the anterior fibres of the adductor arcus palatini. The palatine is rod-like in C. gariepinus and articulates with the orbitonasal lamina in larval specimens and with its ossification, the lateral ethmoid, in juvenile and adult specimens. The articulation occurs via a long cartilaginous strip on the dorsal face of the autopalatine, thereby enabling both a rotation and a restricted sliding.  相似文献   

17.
In the present study we examined muscle development throughout the complete larval cycle of the bivalve mollusc, Mytilus trossulus. An immunofluorescence technique and laser scanning confocal microscopy were used in order to study the organization of the muscle proteins (myosin, paramyosin, twitchin, and actin) and some neurotransmitters. The appearance of the muscle bundles lagged behind their nervous supply: the neuronal elements developed slightly earlier (by 2 h) than the muscle cells. The pioneer muscle cells forming a prototroch muscle ring were observed in a completed trochophore. We documented a well‐organized muscle system that consisted of the muscle ring transforming into three pairs of velar striated retractors in the early veliger. The striations were positive for all muscle proteins tested. Distribution of FMRFamide and serotonin (5‐HT) immunocytochemical staining relative to the muscle ring differed significantly: 5‐HT‐immunioreactive cells were situated in the center of the striated muscle ring, while Phe‐Met‐Arg‐Phe‐NH2 neuropeptide FMRFamid immunoreactive fibers were located in a distal part of this ring. Our data showed clearly that the muscle proteins and the neurotransmitters were co‐expressed in a coordinated fashion in a continuum during the early stages of the mussel development. Our study provides the first strong evidence that mussel larval metamorphosis is accompanied by a massive reorganization of striated muscles, followed by the development of smooth muscles capable of catch‐contraction.  相似文献   

18.
Abstract. The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head retractors, three pairs of incomplete circular muscles, which are modified into dorso-ventral muscles, and a single pair of dorsolateral muscles. The visceral musculature consists of a complex of thick muscles associated with the mastax, as well as several sets of delicate fibers associated with the corona, stomach, gut, and cloaca, including thin longitudinal gut fibers and viscero-cloacal fibers, never before reported in other species of rotifers. The dorsal, lateral, and ventral retractor muscles and the incomplete circular muscles associated with the body wall appear to be apomorphies for the Rotifera. Muscle-revealing staining shows promise for providing additional information on previously unrecognized complexity in rotifer musculature that will be useful in functional morphology and phylogenetic analyses.  相似文献   

19.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

20.
Two buccal mass retractor muscles of Philine are innervatedby at least 4 excitatory motoneurons, whose cell bodies liein the buccal and the cerebral ganglia. The muscle fibres respondto action potentials generated in the motoneurons or their axonswith excitatory junction potentials (ejps), each of which isfollowed by a small twitch-like contraction. Both the electricaland mechanical responses facilitate and summate with repetitivestimulation. A large ventrally located cerebral neuron (VGC) inhibits tensiondevelopment in the muscle by reducing the amplitude of the excitatoryjunction potentials from and identified buccal motoneuron. Acetylcholinereversibly depolarises and causes tonic contraction of the muscles.This action is partially antagonised by hexamethonium, whichalso blocks the ejps from two axons in the buccal and one inthe pedal nerve 9. 5-Hydroxytryptamine potentiates the ejp fromthe identified buccal motoneuron and enhances the rate of relaxation.Histamine reduces the amplitude of the presumed cholinergicbuccal nerve ejps, but does not affect the hexamethonium sensitiveejp in the pedal nerve 9. In this respect its action resemblesthat of the ventral giant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号