首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxococcus xanthus, a Gram-negative developmental bacterium, contains a large number of protein Ser/Thr kinases (PSTKs). Among these PSTKs, Pkn4 has been shown to be 6-phosphofructokinase (PFK) kinase. PFK associates with the regulatory domain of Pkn4 (Pkn4RD) and is activated by Pkn4-mediated phosphorylation. The activation of PFK is required to consume glycogen accumulated during early development and is essential for efficient sporulation. Using the yeast two-hybrid screen, we identified three new factors, MkapA, MkapB and MkapC, that interact with Pkn4 and each contains well-known protein-protein interaction domains. MkapB contains eight tandem repeats of the TPR (tetratrico peptide repeat) domain and its interaction with Pkn4RD was phosphorylation-dependent. MkapB remained associated with Pkn4RD. As a result, Pkn4 did not interact with PFK and its activation was inhibited. While deletion of the pfk-pkn4 operon did not inhibit fruiting body formation, the spore yield was low. In contrast, a mkapB deletion mutant exhibited a 24 h delay in fruiting body formation, accumulated less glycogen in the stationary phase and gave rise to 3.2% spore formation as opposed to 100% attained with DZF1. In addition to Pkn4, MkapA associated with other membrane-associated PSTKs, Pkn1, Pkn2, Pkn8 and Pkn9, while MkapB associated with Pkn8 and Pkn9, and MkapC with Pkn8. These results indicate that there are complex PSTK networks in M. xanthus that share common modulating factors.  相似文献   

2.
Myxococcus xanthus is a Gram-negative bacterium that exhibits a communal lifestyle during vegetative growth and multicellular development, forming fruiting bodies filled with spores. It contains at least 13 eukaryotic-like protein Ser/Thr kinases (PSTKs from Pkn1 to Pkn13). In the present report, we demonstrate that Pkn4, the gene located 18 bp downstream of the gene for 6-phosphofructokinase (PFK), is a PSTK for M. xanthus PFK (Mx-PFK), the key regulatory enzyme in glycolysis. Both Pkn4 and Mx-PFK were expressed in Escherichia coli and purified. Mx-PFK was found to be phosphorylated by Pkn4 at Thr-226, which is presumed to be located in the allosteric effector site of the PFK. The phosphorylation of Mx-PFK enhanced its activity 2.7-fold, indicating that Pkn4 plays an important role in glucose metabolism. Although PFKs from other organisms are known to be tetrameric enzymes, Mx-PFK is composed of an octamer and is dissociated to tetramers in the presence of phosphoenolpyruvate (PEP), an allosteric inhibitor for PFK. Furthermore, phosphorylation of PFK by Pkn4 is almost completely inhibited by PEP. Mx-PFK is associated with the regulatory domain of Pkn4, and this association is inhibited by PEP. This is the first demonstration that a prokaryotic PFK is regulated by phosphorylation by PSTK in prokaryotes.  相似文献   

3.
Myxococcus xanthus, a gram-negative developmental bacterium, contains a large number of protein Ser/Thr kinases (PSTKs). Among these PSTKs, Pkn4 is shown to be 6-phosphofructokinase (PFK) kinase. PFK associates with the regulatory domain of Pkn4 (Pkn4RD) and is activated 2.7-fold upon phosphorylation at Thr-226 by Pkn4. The activation of PFK is required to consume glycogen accumulated during early development and is essential for efficient sporulation. Three new factors, MkapA, MkapB and MkapC have been identified that associate with Pkn4 by the yeast two-hybrid screen and each contains well-known protein-protein interaction domains. MkapB interacts with Pkn4 in a phosphorylation-dependent manner and remains associated with Pkn4 after its phosphorylation. Binding of MkapB to Pkn4 prevents the interaction of Pkn4 with PFK and consequently PFK phosphorylation and activation. A pfk-pkn4 deletion mutant accumulates glycogen at a rate two folds higher than the parent strain, DZF1, at the stationary phase and early development stage, it is unable to consume glycogen during development and produces only 3.4% of the DZF1 spore yield. In contrast, an mkapB deletion mutant exhibits a 24 h delay in fruiting body formation, accumulates less glycogen in the stationary phase and gives rise to 6.4% of the DZF1 spore yield. In addition to Pkn4, MkapA associates with other membrane-associated PSTKs, Pkn1, Pkn2, Pkn8 and Pkn9, while MkapB associates with Pkn8 and Pkn9, and MkapC with Pkn8. These results indicate that there are complex PSTK networks in M. xanthus sharing common modulating factors.  相似文献   

4.
5.
Murein (peptidoglycan) components are able to rescue sporulation in certain sporulation-defective mutants of Myxococcus xanthus. N-Acetylglucosamine, N-acetylmuramic acid, diaminopimelic acid, and D-alanine each increase the number of spores produced by SpoC mutants. When all four components are included they have a synergistic effect, raising the number of spores produced by SpoC mutants to the wild-type level. Murein-rescued spores are resistant to heat and sonic oscillation and germinate when plated on a nutrient-rich medium. They appear to be identical to fruiting body spores in their ultrastructure, in their protein composition, and in their resistance to boiling sodium dodecyl sulfate. Murein rescue of sporulation, like fruiting body sporulation, requires high cell density, a low nutrient level, and a solid surface.  相似文献   

6.
Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficiency was a function of the average number of cells within the bead at the time that sporulation conditions were imposed. A minimum of ca. 4 cells per microbead was necessary for efficient lysis and sporulation to proceed. Increasing this number accelerated the lysis and sporulation process. No lysis occurred when an average of 0.4 cell was entrapped per bead. Entrapping an average of 1.7 cells per bead resulted in 46% lysis and 3% sporulation of survivors, whereas entrapping an average of 4.2 cells per bead yielded 82% lysis and 44% sporulation of the surviving cells. Sporulation and lysis also depended upon the cell density in the culture as a whole. The existence of these two independent cell density parameters (cells per bead and cells per milliliter) suggests that at least two separate cell density signals play a role in controlling sporulation in M. xanthus.  相似文献   

7.
Myxococcus xanthus is a soil-dwelling, gram-negative bacterium that during nutrient deprivation is capable of undergoing morphogenesis from a vegetative rod to a spherical, stress-resistant spore inside a domed-shaped, multicellular fruiting body. To identify proteins required for building stress-resistant M. xanthus spores, we compared the proteome of liquid-grown vegetative cells with the proteome of mature fruiting body spores. Two proteins, protein S and protein S1, were differentially expressed in spores, as has been reported previously. In addition, we identified three previously uncharacterized proteins that are differentially expressed in spores and that exhibit no homology to known proteins. The genes encoding these three novel major spore proteins (mspA, mspB, and mspC) were inactivated by insertion mutagenesis, and the development of the resulting mutant strains was characterized. All three mutants were capable of aggregating, but for two of the strains the resulting fruiting bodies remained flattened mounds of cells. The most pronounced structural defect of spores produced by all three mutants was an altered cortex layer. We found that mspA and mspB mutant spores were more sensitive specifically to heat and sodium dodecyl sulfate than wild-type spores, while mspC mutant spores were more sensitive to all stress treatments examined. Hence, the products of mspA, mspB, and mspC play significant roles in morphogenesis of M. xanthus spores and in the ability of spores to survive environmental stress.  相似文献   

8.
The Myxococcus xanthus gene, pkn9 , encodes a protein that contains significant homology with eukaryotic Ser/Thr protein kinases. The pkn9 gene was singled out of a previously identified family of kinase genes by amplification techniques that displayed differences in kinase gene expression during selected periods of the M. xanthus life cycle. Pkn9 was constitutively expressed during vegetative growth and upregulated during the aggregation stage of early development. It consists of 589 amino acids, and its N-terminal 394 residues show 38% identity with both Pkn1 and Pkn2 of M. xanthus . This region also shows 29, 25 and 29% identity with myosin light-chain kinase, protein kinase C, and cAMP-dependent protein kinase, respectively. A 22-residue hydrophobic transmembrane domain separates the kinase domain from the 173-residue C-terminal domain that resides on the outside of the inner membrane. The C-terminal domain contains two sets of tandem repeats of 13 and 10 residues which have no known function. When expressed in Escherichia coli under the T7 promoter, Pkn9 was found to be phosphorylated on serine and threonine residues. Disruption of the pkn9 kinase catalytic subdomains I–III by the insertion of a kanamycin-resistance gene resulted in slightly delayed, smaller and more-crowded fruiting bodies, while spore formation was normal. Total deletion of the pkn9 gene caused severely reduced progression through development resulting in light loose mounds that become slightly more compact over time. Development progressed further at the centre than at the edge of the spot, and spore formation was significantly reduced. Two-dimensional gel analysis revealed that both the disruption and the deletion of pkn9 prevented the expression of five membrane proteins (KREP9-1-4). These results suggest that the loss of Pkn9 kinase activity caused altered fruiting-body formation, the absence of the KREP9 proteins in the membrane, and reduced spore production.  相似文献   

9.
Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (for frz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority of frz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgA mutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. The frgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgB and frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgC null mutants, however, formed wild-type fruiting bodies.  相似文献   

10.
Glucosamine (GlcN), which has previously been shown to rescue fruiting body formation, lysis, and sporulation in a developmental mutant (G. Janssen and M. Dworkin, Dev. Biol. 112:194-202, 1985), induced lysis in vegetative and developing wild-type cells and inhibited fruiting body formation. It also resulted in a transient, intracellular increase in the concentration of glycerol, a known sporulation inducer, and sporulation of the surviving cells. Phospholipase activity, which was shown to be normally developmentally regulated, increased 7.6-fold after treatment of vegetative cells with 50 mM GlcN. Likewise, autocidal activity, which normally increased 18 to 24 h after the initiation of development, increased 20% when vegetative or developing cells were exposed to GlcN. Two mutants resistant to GlcN-induced lysis (MD1021 and MD1022) were isolated and showed neither an increase in autocide production nor an increase in phospholipase activity in response to added GlcN. MD1021 was developmentally deficient, and GlcN rescued fruiting body formation as well as phospholipase activity and autocide production. We propose that GlcN exerts its lytic effect by regulating the activity of phospholipase enzymes that release autocides, compounds that are believed to be responsible for developmental autolysis. GlcN-induced sporulation was found to depend on several factors: the initial cell density, the amount of lysis induced by GlcN, and the presence of tan-phase variants. An initial cell density of greater than 2 x 10(5) cells per ml was required to support GlcN-induced sporulation, and sporulation did not occur unless 50 to 75% of these cells had lysed. Mutants that were resistant to GlcN-induced lysis also did not sporulate in the presence of GlcN. The effects of GlcN on developing cells depended on the concentration of GlcN added; the addition of low concentrations of GlcN resulted in enhancement of sporulation, while higher concentrations resulted in the inhibition of sporulation. The ultrastructure of GlcN-induced spores resembled that of spores induced by the exogenous addition of glycerol, in contrast to spores isolated from mature fruiting bodies. A model by which GlcN may regulate both lysis and sporulation is presented.  相似文献   

11.
Iso-fatty acids (FAs) are the dominant FA family in all myxobacteria analyzed. Furthermore, it was postulated that iso-FAs or compounds derived thereof are involved in fruiting body formation in Myxococcus xanthus, since mutants with a reduced level of iso-FA due to a reduced level of the precursor isovaleryl-CoA, are delayed in aggregation and produce only few myxospores. To elucidate the function of iso-FAs and their corresponding lipids we have analyzed the developmental phenotype of mutants having different levels of iso-FAs resulting in a clear correlation between the amount of iso-FAs and the delay of aggregation and reduction in spore yield. Addition of either isovalerate or 13-methyltetradecanoic acid resulted in restoration of the wild-type FA profile and normal development. Detailed analysis of the fatty acid (FA) profile during fruiting body formation in Myxococcus xanthus wild-type revealed the specific accumulation of 13-methyltetradecanal and 1-O-13-methyltetradecylglycerol which were produced specifically in the myxospores and which are derived from 1-O-(13-methyl-1-Z-tetradecenyl)-2-O-(13-methyltetradecanoyl)-glycero-3-phosphatidylethanolamine (VEPE) and 1,2-di-(13-methyltetradecanoyl)-3-(13-methyltetradecyl)glycerol (TG-1), respectively. The structures of these unusual ether lipids have been determined by spectrometric methods and synthesis (for TG-1). Analysis of several mutants blocked at different stages of development indicated that the biosynthesis of TG-1 is developmentally regulated and that VEPE might be an intermediate in the TG-1 biosynthesis. Finally, addition of TG-1 to mutants blocked in the biosynthesis of isovaleryl-CoA could restore aggregation and sporulation emphasizing the important role of iso-branched lipids for myxobacterial development.  相似文献   

12.
After the demonstration that Stigmatella aurantiaca DW4 secretes an endo-N-acetyl-beta-D-glucosaminidase (ENGase), acting on the di-N-acetylchitobiosyl part of N-linked glycans (S. Bourgerie, Y. Karamanos, T. Grard, and R. Julien, J. Bacteriol. 176:6170-6174, 1994), an ENGase activity having the same substrate specificity was also found to be secreted during vegetative growth of Myxococcus xanthus DK1622. The activity decreased in mutants known to secrete less protein than the wild type (Exc +/-). During submerged development, the activity was produced in two steps: the first increase occurred during the aggregation phase, and the second one occurred much later, during spore formation. This production was lower in developmental mutants impairing cell-cell signaling, the late mutants (csg and dsg) being the most deficient. Finally, when sporulation was obtained either by starvation in liquid shake flask culture or by glycerol induction, the activity was produced exclusively by the wild-type cells during the maturation of the coat.  相似文献   

13.
14.
Myxococcus xanthus can sporulate in either of two ways: at the end of the program of fruiting body development or after exposure of growing cells to certain reagents such as concentrated glycerol. Fruiting body sporulation requires starvation, while glycerol sporulation requires rapid growth, and since the two types of spores are structurally somewhat different, it has generally been assumed that the two processes are different. However, a Tn5 Lac insertion mutation, Omega7536, has been isolated which simultaneously blocks the development of fruiting body spores as well as glycerol-induced spores. Both sporulation pathways are blocked in the mutant within the process that converts a rod-shaped cell into a spherical spore. The Omega7536 locus is expressed at the time of cell shape change appropriate to each process, early after glycerol induction and late after starvation induction. On the C-signal response pathway, it is possible to identify positions for the normal function of the Omega7536 locus and for the inducing stimulus from glycerol that are unique and consistent with the observations. Although the two sporulation pathways differ in certain respects, it is shown that they share at least one step for changing a rod-shaped cell into a spherical spore.  相似文献   

15.
H Udo  M Inouye    S Inouye 《Journal of bacteriology》1996,178(22):6647-6649
Pkn2 is a putative transmembrane protein serine/threonine kinase required for normal development of Myxococcus xanthus. The effect of Pkn2 overexpression on development of M. xanthus was examined by expressing pkn2 under the control of a kanamycin promoter. Pkn2 was clearly detected by Western blot (immunoblot) analysis in the overexpression strain (the PKm/pkn2 strain) but could not be detected in the wild-type strain. Overexpressed Pkn2 was located almost exclusively in the membrane fraction, suggesting that Pkn2 is a transmembrane receptor-type protein Ser/Thr kinase. The PKm/pkn2 strain formed fruiting bodies more slowly than the wild-type strain, in contrast to a Pkn2 deletion strain, the delta pkn2 strain, which developed faster than the wild-type strain. However, spore production was reduced in both the PKm/pkn2 and delta pkn2 strains. These data suggest that Pkn2 functions as a negative regulator for fruiting-body formation and that the proper level of Pkn2 is necessary for maximum myxospore yield.  相似文献   

16.
17.
18.
Myxococcus xanthus co-ordinates cell movement during its complex life cycle using multiple chemotaxis-like signal transduction pathways. These pathways regulate both type IV pilus-mediated social (S) motility and adventurous (A) motility. During a search for new chemoreceptors, we identified the che4 operon, which encodes homologues to a MCP (methyl-accepting chemotaxis protein), two CheWs, a hybrid CheA-CheY, a response regulator and a CheR. Deletion of the che4 operon did not cause swarming or developmental defects in either the wild-type (A(+)S(+)) strain or in a strain sustaining only A motility (A(+)S(-)). However, in a strain displaying only S motility (A(-)S(+)), deletion of the che4 operon or the gene encoding the response regulator, cheY4, caused enhanced vegetative swarming and prevented aggregation and sporulation. In contrast, deletion of mcp4 caused reduced vegetative swarming and enhanced development compared with the parent strain. Single-cell analysis of the motility of the A(-)S(+) parent strain revealed a previously unknown inverse correlation between velocity and reversal frequency. Thus, cells that moved at higher velocities showed a reduced reversal frequency. This co-ordination of reversal frequency and velocity was lost in the mcp4 and cheY4 mutants. The structural components of the S motility apparatus were unaffected in the che4 mutants, suggesting that the Che4 system affects reversal frequency of cells by modulating the function of the type IV pilus.  相似文献   

19.
Eukaryotic cells contain a large number of protein Ser/ Thr kinases, which play important roles in signal transduction required for cell proliferation, differentiation, and stress response and adaptation. It is also known that some prokaryotes contain a family of protein Ser/Thr kinases. A major challenge in the characterization of these kinases is how to identify their specific substrates. Here we developed such a method using a protein Ser/Thr kinase, Pkn2 from Myxococcus xanthus, a Gram-negative soil bacterium. When Pkn2 is inducibly expressed in E. coli, cells are unable to form colonies on agar plates. This lethal effect of Pkn2 was eliminated in an inactive Pkn2 mutant in which the highly conserved Lys residue was changed to Asn, indicating that phosphorylation of a cellular protein(s) in E. coli resulted in growth arrest. Several clones from an E. coli genomic library were found to suppress the lethal effect when co-expressed with pkn2. Four out of seven multi-copy suppressors were identified to encode HU, (3 for HUalpha and 1 for HUB) a histone-like DNA binding protein. Purified HUalpha was found to be specifically phosphorylated by Pkn2 at Thr-59, and the phosphorylated HUalpha became unable to bind to DNA, suggesting that the phosphorylation of endogenous HU proteins by Pkn2 contributed at least in part to the lethal effect in E. coli. The present method termed the STEK method (Suppressors of Toxic Effects of Kinases) may be widely used for the substrate identification not only for prokaryotic protein Ser/Thr kinases but also for eukaryotic kinases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号