首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent data on the synthesis and hydrolysis of flavin nucleotides in yeast and bacteria and the regulation of this process are summarized. Specific examples are provided and the prospects of the use of genetically modified microorganisms for the industrial manufacturing of flavin mononucleotide and flavin adenine dinucleotide are considered.  相似文献   

2.
3.
Chorismatic synthase was purified to apparent homogeneity from Bacillus subtilis. The enzyme required NADPH-dependent flavin reductase, Mg2+, NADPH, and flavin (FMN or FAD) for activity. The molecular weight of chorismate synthase was 24,000 as determined by sodium dedecyl sulfate (SDS)-gel electrophoresis. The enzyme was also isolated in a complex form associated with NADPH-dependent flavin reductase and another enzyme of the aromatic amino acid pathway, dehydroquinate synthase. On SDS-gel electrophoresis, this form was resolved into three bands with molecular weights of 13,000, 17,000, and 24,000. The enzyme complex was easily dissociated and the dissociation resulted in a change in the chromatographic properties of NADPH-dependent flavin reductase which was no longer retained on phosphocellulose whereas chorismate synthase was still adsorbed. Chorismate synthase activity was linear with time and protein concentration, whereas partially purified preparations showed a significant lag period before the reaction took place. Moreover, crude or partially purified enzyme preparations were completely inactivated by dilution and the activity could be recovered by addition of flavin reductase. A possible role of NADPH-dependent flavin reductase in the activation and regulation of chorismate synthase activity is discussed.  相似文献   

4.
Experiments were performed to probe the role of exocytotic and endocytotic processes in the regulation of the human granulocyte O-2-generating system. Analytical subcellular fractionation studies indicated that 25-30% of the total cellular b-cytochrome and 8-10% of the flavin co-sedimented with plasma membrane markers, irrespective of stimulation of the cells by the chemoattractants N-formyl-Met-Leu-Phe (FMLP) or C5a. Phorbol myristate acetate stimulation resulted in significant translocation of b-cytochrome but not flavin from the specific granule/Golgi to the plasma membrane-enriched fractions. These results indicated that approximately 3.1 X 10(5) flavin and 0.8-1 X 10(6) b-cytochrome molecules are present in the plasma membrane of an isolated unstimulated human granulocyte and that these levels are invariant upon stimulation with chemoattractants. Maximal instantaneous rates of O-2 generation by cells in these preparations, however, were equivalent for all the stimuli. Since stimulation of granulocytes by phorbol myristate acetate, FMLP, or C5a results in exocytosis and/or endocytosis, then the role of these processes in regulating stimulated O-2 production by controlling the content of plasma membrane redox enzymes is questionable. This conclusion was supported by observations made with cytoplasts, which do not have an intracellular reserve of granules. Cytoplasts prepared from granulocytes produced O-2 at equivalent rates as their parent cells on a per unit surface area basis. These results suggest: 1) that stimulation of granulocytes with chemotactic peptides leads to full generation of O-2 at the cell surface without exocytotic recruitment of additional b-cytochrome and flavoprotein from the cytoplasmic compartment; 2) that these redox enzymes are not internalized along with chemoattractant receptors; and 3) that traffic of these redox enzymes between endo- and plasma membranes is not involved in the regulation of O-2 production in suspensions of human granulocytes stimulated by chemoattractants.  相似文献   

5.
6.
Spectroscopic and potentiometric measurements have been carried out, at room temperature, during anaerobic titrations of Hansenula anomala L-lactate cytochrome c oxidoreductase (or flavocytochrome b2) both in the presence and in the absence of pyruvate (the physiological reaction product). Under the same conditions, the flavin spectral contribution was estimated and the flavosemiquinone proportion was directly determined by electron paramagnetic resonance measurements. In the present study, we show the visible light absorption and paramagnetic characteristics of the flavin radical at 18 degrees C and also the dramatic effect of pyruvate on the redox potential of each monoelectronic couple of the flavin. Thermodynamic stabilization of the semiquinone form, in the presence of pyruvate, is interpreted as a mode of regulation of flavocytochrome b2 activity. Taking into account that analogous controls have been observed with two other flavoenzymes belonging to this class of dehydrogenases/one-electron transferases, we suggest that redox potential modulation could be a type of regulation effective for the whole class of enzymes in which a semiquinone is an obligate intermediate.  相似文献   

7.
The three mammalian nitric-oxide synthases produce NO from arginine in a reaction requiring 3 electrons per NO, which are supplied to the catalytic center from NADPH through reductase domains incorporating FAD and FMN cofactors. The isoforms share a common reaction mechanism and requirements for reducing equivalents but differ in regulation; the endothelial and neuronal isoforms are controlled by calcium/calmodulin modulation of the electron transfer system, while the inducible isoform binds calmodulin at all physiological Ca(2+) concentrations and is always on. The thermodynamics of electron transfer through the flavin domains in all three isoforms are basically similar. The major flavin states are FMN, FMNH., FMNH(2), FAD, FADH., and FADH(2). The FMN/FMNH. couple is high potential ( approximately 100 mV) in all three isoforms and is unlikely to be catalytically competent; the other three flavin couples form a nearly isopotential group clustered around -250 mV. Reduction of the flavins by the pyridine nucleotide couple at -325 mV is thus moderately thermodynamically favorable. The ferri/ferroheme couple in all three isoforms is approximately -270 mV in the presence of saturating arginine. Ca(2+)/calmodulin has no effect on the potentials of any of the couples in endothelial nitric-oxide synthase (eNOS) or neuronal nitric-oxide synthase (nNOS). The pH dependence of the flavin couples suggests the presence of ionizable groups coupled to the flavin redox/protonation states.  相似文献   

8.
Cryptochromes are blue light-sensing photoreceptors found in plants, animals, and humans. They are known to play key roles in the regulation of the circadian clock and in development. However, despite striking structural similarities to photolyase DNA repair enzymes, cryptochromes do not repair double-stranded DNA, and their mechanism of action is unknown. Recently, a blue light-dependent intramolecular electron transfer to the excited state flavin was characterized and proposed as the primary mechanism of light activation. The resulting formation of a stable neutral flavin semiquinone intermediate enables the photoreceptor to absorb green/yellow light (500-630 nm) in addition to blue light in vitro. Here, we demonstrate that Arabidopsis cryptochrome activation by blue light can be inhibited by green light in vivo consistent with a change of the cofactor redox state. We further characterize light-dependent changes in the cryptochrome1 (cry1) protein in living cells, which match photoreduction of the purified cry1 in vitro. These experiments were performed using fluorescence absorption/emission and EPR on whole cells and thereby represent one of the few examples of the active state of a known photoreceptor being monitored in vivo. These results indicate that cry1 activation via blue light initiates formation of a flavosemiquinone signaling state that can be converted by green light to an inactive form. In summary, cryptochrome activation via flavin photoreduction is a reversible mechanism novel to blue light photoreceptors. This photocycle may have adaptive significance for sensing the quality of the light environment in multiple organisms.  相似文献   

9.
Luminous bacteria contain several species of flavin reductases, which catalyze the reduction of FMN using NADH and/or NADPH as a reductant. The reduced FMN (i.e. FMNH(2)) so generated is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction. In this report, the general properties of luciferases and reductases from luminous bacteria are briefly summarized. Earlier and more recent studies demonstrating the direct transfer of FMNH(2) from reductases to luciferase are surveyed. Using reductases and luciferases from Vibrio harveyi and Vibrio fischeri, two mechanisms were uncovered for the direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase. A complex of an NADPH-specific reductase (FRP(Vh)) and luciferase from V. harveyi has been detected in vitro and in vivo. Both constituent enzymes in such a complex are catalytically active. The reduction of FRP(Vh)-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP(+) and NADPH as a factor for the regulation of the production of FMNH(2) by FRP(Vh) for luciferase bioluminescence. Other regulations of the activity coupling between reductase and luciferase are also discussed.  相似文献   

10.
Neuronal nitric-oxide synthase (nNOS) differs from inducible NOS (iNOS) in both its dependence on the intracellular Ca2+ concentration and the production rate of NO. To investigate what difference(s) exist between the two NOS flavin domains at the electron transfer level, we isolated the recombinant human NOS flavin domains, which were co-expressed with human calmodulin (CaM). The flavin semiquinones, FADH* and FMNH*, in both NOSs participate in the regulation of one-electron transfer within the flavin domain. Each semiquinone can be identified by a characteristic absorption peak at 520 nm (Guan, Z.-W., and Iyanagi, T. (2003) Arch. Biochem. Biophys. 412, 65-76). NADPH reduction of the FAD and FMN redox centers by the CaM-bound flavin domains was studied by stopped-flow and rapid scan spectrometry. Reduction of the air-stable semiquinone (FAD-FMNH*) of both domains with NADPH showed that the extent of conversion of FADH2/FMNH* to FADH*/FMNH2 in the iNOS flavin domain was greater than that of the nNOS flavin domain. The reduction of both oxidized domains (FAD-FMN) with NADPH resulted in the initial formation of a small amount of disemiquinone, which then decayed. The rate of intramolecular electron transfer between the two flavins in the iNOS flavin domain was faster than that of the nNOS flavin domain. In addition, the formation of a mixture of the two- and four-electron-reduced states in the presence of excess NADPH was different for the two NOS flavin domains. The data indicate a more favorable formation of the active intermediate FMNH2 in the iNOS flavin domain.  相似文献   

11.
Mammalian thioredoxin reductase catalyzes NADPH dependent reduction of a wide variety of substrates and plays a central role in redox regulation and antioxidant defence. Recently the enzyme was discovered to be a selenoprotein with a catalytically active penultimate selenocysteine residue. Dinitrohalobenzenes irreversibly inhibit the enzyme with a concomitant induction of an NADPH oxidase activity, producing superoxide. A model explaining the reactivity of dinitrohalobenzenes with thioredoxin reductase is presented, involving dinitrophenyl-derivatization of both the selenocysteine residue and its neighboring cysteine residue, reduction by NADPH of the enzyme-bound flavin in dinitrophenyl-alkylated enzyme (dnp-TrxR), followed by two consecutive one-electron transfers from the flavin to nitro groups of the dnp-moieties in dnp-TrxR, forming nitro anion radicals. The nitro radicals react with oxygen to form superoxide, again generating dnp-TrxR with an oxidized flavin, which may then follow another cycle of NADPH-dependent superoxide production. Dinitrohalobenzene compounds are well known for their immunostimulatory properties. Here it is proposed that the inflammatory components of this immunostimulation can be mediated by interaction with the thioredoxin system, via effects on cell function by superoxide production, oxidative stress and increased extracellular levels of thioredoxin.  相似文献   

12.
13.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

14.
15.
S Ghisla  V Massey  K Yagi 《Biochemistry》1986,25(11):3282-3289
6-Azidoflavins, 6-thiocyanatoflavins, and 6-mercaptoflavins at the lumiflavin, riboflavin, FMN, and FAD level were prepared from the corresponding 6-aminoflavins and some of their properties investigated. They are bound tightly by apoflavin enzymes which bind either riboflavin, FMN, or FAD. 6-Azidoflavins undergo facile photolysis. One major product was identified as 6-aminoflavin. A further product, which was formed also during acid decomposition of the azide, results from opening of the flavin benzene ring and is proposed to have a lumazine structure. 6-Thiocyanatoflavins are easily converted by dithiothreitol to 6-mercaptoflavins. The latter are stabilized against dimerization in the presence of reducing thiols. 6-Mercaptoflavins have a pK of 5.9, which corresponds to ionization of the 6-SH function. The neutral form is yellow, while the anion is green, due to a long-wavelength band (lambda max approximately 600 nm) extending beyond 700 nm. These properties suggest the use of these 6-substituted flavins for probing the active site of flavin enzymes. Because their reactive substituents are in close proximity to the flavin N(5)-position, these 6-substituted derivatives should also serve as useful probes of the environment around the flavin N(5), a position known to be involved in all flavin-mediated redox processes.  相似文献   

16.
I. M. Gascoigne  G. K. Radda 《BBA》1967,131(3):498-507
1. The reaction between dihydrolipoic acid and a number of flavin derivatives has been found to be of first order in both reactants.

2. The rates are strongly pH dependent and are of first order in OH- concentration as well as being generally base catalysed.

3. The polarographic half-wave potentials of flavin derivatives and their reactivities towards NADH correlate reasonably well with their reactivities towards dihydrolipoic acid.

4. On the basis of these observations and on some electron spin resonance evidence a two-step mechanism is suggested for the reaction, the first being a fast dissociation of one of the -SH groups of dihydrolipoic acid into its anion followed by a second-order reaction between this anion and the flavin, probably by a two-electron transfer.

5. The pKa of the -SH-groups of the acid has been measured spectrophotometrically, and the value derived (10.7) is in good agreement with the value arrived at from the kinetic studies.  相似文献   


17.
We investigated the mechanism of recognition and activation of substrate by D-amino acid oxidase (DAO) by thermodynamical and spectrophotometric methods using zwitterionic ligands [N-methylisonicotinate (NMIN), trigonelline, and homarine] and monoanionic ligands as model compounds of the substrate and the product. In terms of the charge within the substrate D-amino acid, monoanionic (e.g., benzoate), zwitterionic (e.g., NMIN), and dianionic (e.g., terephthalate) ligands are thought to be good models for neutral, basic, and acidic amino acids, respectively, because when a substrate binds to DAO, as previously reported, the a-ammonium group (-NH(3)(+)) probably loses a proton to become neutral (-NH(2)) before the oxidation. Zwitterionic ligands can also be good model compounds of product in the purple complex (the complex of reduced DAO with the product imino acid), because the imino nitrogen of the imino acid is in a protonated cationic form. We also discuss electrostatic interaction, steric effect, and charge-transfer interaction as factors which affect the affinity of substrate/ligand for DAO. Monoanionic ligands have high affinity for neutral forms of oxidized and semiquinoid DAO, while zwitterionic ligands have high affinity for anionic forms of oxidized, semiquinoid, and reduced DAO; this difference was explained by the electrostatic interaction in the active site. The low affinity of homarine (N-methylpicolinate) for oxidized DAO, as in the case of o-methylbenzoate, is due to steric hindrance: one of the ortho carbons of benzoate is near the phenol carbons of Tyr228 and the other ortho carbon is near the carbonyl oxygen of Gly313. The correlation of the affinity of meta- and para-substituted benzoates for oxidized DAO with their Hammet's s values are explained by the HOMO-LUMO interaction between the phenol group of Tyr224 and the benzene ring of benzoate derivative. The pK(a) of neutral flavin [N(3)-H of oxidized flavin, N(5)-H of semiquinoid flavin, and N(1)-H of reduced flavin] decreases by its binding to the apoenzyme. The magnitude of the decrement is oxidized flavin < semiquinoid flavin < reduced flavin. The largest factor in the substantially low pK(a) of reduced flavin in DAO is probably the steric hindrance between the hydrogen atom of H-N(1)(flavin) and the hydrogen atom of H-N of Gly315, which becomes significant when a hydrogen is bound to N(1) of flavin.  相似文献   

18.
W S Kunz 《FEBS letters》1986,195(1-2):92-96
The different flavoproteins contributing to flavin fluorescence of isolated rat liver mitochondria have distinct excitation and emission spectra. The NAD-linked flavin component was identified as alpha-lipoamide dehydrogenase, while the non-NAD-linked component was found to be electron transfer flavoprotein. The differences in excitation and emission properties of the mitochondrial flavoproteins permit selective recording of their redox state changes in isolated mitochondria.  相似文献   

19.
20.
Flavins are active components of many enzymes. In most cases, riboflavin (vitamin B2) as a coenzyme represents the catalytic part of the holoenzyme. Riboflavin is an amphiphatic molecule and allows a large variety of different interactions with the enzyme itself and also with the substrate. A great number of active riboflavin analogs can readily be synthesized by chemical methods and, thus, a large number of possible inhibitors for many different enzyme targets is conceivable. As mammalian and especially human biochemistry depends on flavins as well, the target of the inhibiting flavin analog has to be carefully selected to avoid unwanted effects. In addition to flavoproteins, enzymes, which are involved in the biosynthesis of flavins, are possible targets for anti-infectives. Only a few flavin analogs or inhibitors of flavin biosynthesis have been subjected to detailed studies to evaluate their biological activity. Nevertheless, flavin analogs certainly have the potential to serve as basic structures for the development of novel anti-infectives and it is possible that, in the future, the urgent need for new molecules to fight multiresistant microorganisms will be met.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号