首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore thehypothesis that cerebrovascular maturation alters ryanodine- andinositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool sizes, we measured total intracellularCa2+ with 45Ca and the fractions ofintracellular Ca2+ released by IP3 and/orcaffeine in furaptra-loaded permeabilized basilar arteries fromnonpregnant adult and term fetal (139-141 days) sheep.Ca2+ mass (nmol/mg dry weight) was similar in adult(1.60 ± 0.18) and fetal (1.71 ± 0.16) arteries in the poolsensitive to IP3 alone but was significantly lower foradult (0.11 ± 0.01) than for fetal (1.22 ± 0.11) arteriesin the pool sensitive to ryanodine alone. The pool sensitive to bothryanodine and IP3 was also smaller in adult (0.14 ± 0.01) than in fetal (0.85 ± 0.08) arteries. Because theCa2+ fraction in the ryanodine-IP3 pool wassmall in both adult (5 ± 1%) and fetal (7 ± 4%) arteries,the IP3 and ryanodine pools appear to be separate in thesearteries. However, the pool sensitive to neither IP3 norryanodine was 10-fold smaller in adult (0.87 ± 0.10) than infetal (8.78 ± 0.81) arteries, where it accounted for 72% oftotal intracellular membrane-bound Ca2+. Thus, duringbasilar artery maturation, intracellular Ca2+ mass plummetsin noncontractile pools, decreases modestly in ryanodine-sensitivepools, and remains constant in IP3-sensitive pools. Inaddition, age-related increases in IP3 efficacy must involve factors other than IP3 pool size alone.

  相似文献   

2.
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca2+-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl? channel blocker DIDS or lowering external Cl? concentration identifying it as a Ca2+-activated Cl? current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.  相似文献   

3.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

4.
Whole-cell and cell-free inside-out patch-clamp recording techniques were used to examine the actions of potassium channel openers pinacidil and cromakalim in enzymatically isolated smooth muscle cells of rat basilar artery. Delayed rectifier and calcium-dependent potassium currents were identified from the whole-cell recordings. Only the calcium-dependent potassium current was increased by cromakalim and pinacidil. Recordings from inside-out membrane patches revealed a large conductance voltage- and calcium-dependent potassium channel, which was blocked by charybdotoxin but unaffected by ATP less than 10 mM. Cromakalim and pinacidil increased the open probability of this channel. On the basis of these results, we suggest that such drugs, acting on cerebral arterial smooth muscle cell potassium channels, may be of some benefit in the treatment of cerebral vasospasm following subarachnoid hemorrhage.  相似文献   

5.
The sensitivity to Ca2+ of the Ca2+-dependent K+ channel can be increased by the artificial electron donor system ascorbate + phenazine-methosulphate in a variety of animal cells. In the human erythrocyte the shift from the 'low' to the 'high-affinity' state seems to depend on the reduction of a membrane component accepting 2 electrons and with an standard redox potential (pH 7.5) of about 47 mV. The relevance of this redox modulation under physiological circumstances is unknown at the moment.  相似文献   

6.
Functional modification of a Ca2+-activated K+ channel by trimethyloxonium   总被引:3,自引:0,他引:3  
R MacKinnon  C Miller 《Biochemistry》1989,28(20):8087-8092
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX.  相似文献   

7.
8.
Properties of a Ca2+-activated K+ channel in a reconstituted system   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
目的:观察新生SD大鼠原代培养皮层神经元的钙激活钾通道(Kca)在黎芦碱致神经元损伤模型上的激活、抑制效应.方法:采用细胞贴附和内面向外两种膜片钳单通道记录方法记录新生SD大鼠原代培养皮层神经元的Kca电生理活动.结果:黎芦碱在胞外可激活Kca.在有钙浴液内,细胞贴附式,钳制膜电位 30 mV,加入不同浓度黎芦碱(μmol/L:15、25、50、75),通道开放概率由0.005分别增加为0.014±0.003、0.085±0.010、0.132±0.016、0.059±0.006(P<0.01),在50μmol/L以内表现出浓度依赖性.无钙浴液内,细胞贴附式膜片上,钳制膜电位 50 mV,随药物浓度(μmol/L)增加为15、40、60、100时,通道开放概率由0.005分别增加为0.014±0.010、0.113±0.006、0.141±0.004、0 295±0.009(P<0.05).6例内面向外式膜片上,钳制膜电位 40 mV,分别加入黎芦碱25 μmol/L、50μmol/L 3 min后,通道开放概率由0.011±0.008分别增加为0.010±0.010、0.012±0.007(P>0.05).黎芦碱在胞内Kca开放概率,平均开放/关闭时间,电流幅值均无明显变化.结论:黎芦碱通过影响胞内游离钙水平间接调节Kca,在缺血缺氧早期,胞内游离钙增高激活Kca开放.  相似文献   

12.
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin.  相似文献   

13.
14.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.  相似文献   

15.
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o).  相似文献   

16.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

17.
L Varecka  E Peterajová 《FEBS letters》1990,276(1-2):169-171
We found that vanadate-induced 45Ca2+ uptake by red cells is maximal at 25 degrees C. At this temperature, the Cai-induced increase of the K+ permeability (the Gárdos effect) shows a lag (up to 8 min) which is not observed at 37 degrees C. This cannot be explained by the lack of availability of Ca2+ for the Ca2(+)-activated K+ channel, and suggests that its activation by Ca2+ is mediated by a temperature-dependent mechanism which remains unknown so far. The lag is not observed when the Gárdos effect was initiated by propranolol. This shows that the putative temperature-dependent step is different from chloride transport.  相似文献   

18.
Large unitary conductance Ca2+-activated K+ channels from smooth muscle membrane were incorporated into phospholipid planar bilayers, and the blockade induced by internally and externally applied Cs+ was characterized. Internal Cs+ blockade is voltage dependent and can be explained on the basis of a Cs+ binding to a site that senses 54% of the applied voltage, with an apparent dissociation constant, Kd(0), of 70 mM. On the other hand, external Cs+ blocks the channel in micromolar amounts, and the voltage dependence of blockade is a function of Cs+ concentration. The fractional electrical distance can be as large as 1.4 at 10 mM Cs+. This last result suggests that the channel behaves as a multi-ion pore. At large negative voltages the I-V relationships in the presence of external Cs+ show an upturn, indicating relief of Cs+ block. External Cs+ blockade is relieved by increasing the internal K+ concentration, but can be enhanced by increasing the external K+. All the characteristics of external Cs+ block can be explained by a model that incorporates a "knock-on" of Cs+ by K+.  相似文献   

19.
Polymyxin B, a novel inhibitor of red cell Ca2+-activated K+ channel   总被引:1,自引:0,他引:1  
Polymyxin B (PXB), a cyclic peptide antibiotic, in concentrations 0.1-3.0 mg/ml (0.08-4.0 mmol/l), inhibited the K+ efflux induced by opening of the Ca2+-activated K+ channel (the Gárdos effect) in intact human red blood cells. The inhibition was observed when the Gárdos effect was elicited by Ca2+ in the presence of vanadate, or propranolol, in ATP-depleted cells, and in A23187-treated cells. The inhibition of the Gárdos effect is caused neither by the inhibition of the anion channel by PXB nor by the inhibition of Ca2+ entry. It can be ascribed to the inhibition of the Ca2+-activated K+ channel. The mechanism of the inhibition remains to be elucidated.  相似文献   

20.
《Life sciences》1995,56(15):PL291-PL298
The aim of this study was to examine the effects of MCI-154, a new positive inotropic agent with vasodilating properties, on the Ca2+-activated K+ channel (KCa channel) of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 μM MCI-154 activated the KCa channel in intact cell-attached patch configurations. In excised inside-out patch configurations, application of 100μM MCI-154 to the cytosolic side activated the KCa channel directly, suggesting that the Ca2+ sensitivity of the KCa channel itself is modulated. Though extracellular application of 100 μM amrinone, a phosphodiesterase inhibitor, activated the KCa channel in the cell-attached patch configurations, application of 100 μm amrinone to the cytosolic side could not activate the KCa channel in inside-out patch configurations. These results indicate that different from amrinone, MCI-154 can modulate Ca2+ sensitivity of the KCa channel in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号