共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of extracellular matrix metalloproteinase inducer protein in prostate cancer progression 总被引:3,自引:0,他引:3
Madigan MC Kingsley EA Cozzi PJ Delprado WJ Russell PJ Li Y 《Cancer immunology, immunotherapy : CII》2008,57(9):1367-1379
Extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) is a multifunctional membrane glycoprotein overexpressed in many solid tumors, and involved in tumor invasion and angiogenesis. We investigated EMMPRIN expression in human prostate cancer (CaP) tissues and cells, and evaluated whether EMMPRIN expression is related to tumor progression and matrix metalloproteinase (MMPs) expression in human CaP. An immunohistochemical study using tissue microarrays of 120 primary CaPs of different grades and 20 matched lymph node metastases from untreated patients was performed. The association of EMMPRIN expression with clinicopathological parameters was evaluated. Co-immunolocalization for EMMPRIN and MMP-1, MMP-2 or MMP-9 in primary tumors was examined using confocal microscopy. Flow cytometry and immunoblotting were used to examine EMMPRIN expression in 11 metastatic CaP cell lines. Heterogeneous expression of EMMPRIN was found in 78/120 (65%) CaPs, correlated significantly with progression parameters including pre-treatment PSA level (P < 0.05) and increased with progression of CaP (Gleason score, P < 0.05; pathological stage, P < 0.01; nodal involvement, P < 0.05 and surgical margin, P < 0.05). Heterogeneous cytoplasmic MMP-1, MMP-2 and MMP-9 associated with EMMPRIN immunolabeling was observed, particularly in tumors with Gleason scores >3 + 4. Metastatic CaP cell lines, except DuCaP, expressed abundant EMMPRIN protein, indicating highly ( approximately 45 to approximately 65 kDa) and less ( approximately 30 kDa) glycosylated forms, although with no relationship to cells being either androgen responsive or nonresponsive. Our results suggest that EMMPRIN may regulate MMPs and be involved in CaP progression, and as such, could provide a target for treating metastatic CaP disease. 相似文献
2.
Expression and localization of extracellular matrix metalloproteinase inducer in giant cell tumor of bone 总被引:8,自引:0,他引:8
Matrix metalloproteinases (MMPs) are regarded as a significant regulator in tumor invasion and metastasis. Previous studies have shown that extracellular matrix metalloproteinase inducer (EMMPRIN) in tumor cells induces the synthesis of MMPs. EMMPRIN is abundantly present on the surface of tumor cells and stimulate adjacent stromal cells to synthesize MMPs to induce tumor progression. Giant cell tumor (GCT) of bone is a benign but locally aggressive primary neoplasm of bone. The spindle-shaped mononuclear stromal cells are considered to be the tumor components of GCT, which are capable of inducing osteoclast formation by recruiting the circulating monocyte and macrophage. In this study, we proposed that EMMPRIN is associated with the biological progression and aggressiveness of GCT. We have conducted semi-quantitative RT-PCR to determine the correlation of EMMPRIN expression with the clinical stage of GCT. We have also examined the cellular localization of EMMPRIN in GCT using in-situ hybridization (ISH) and Immunohistochemistry (IH). The results showed that EMMPRIN was present in GCT and its mRNA levels were associated with the clinical stage of GCT. Higher expression level of EMMPRIN was observed in GCT with advanced stage (stage III). There was a great significance (P < 0.05) of EMMPRIN expression between stage I & II and stage III GCTs. Both ISH and IH demonstrated that EMMPRIN is present at the multinuclear osteoclast-like giant cells of GCT, with strong immunostaining on the cell membrane. The stromal-like tumor cells were also positively stained but the intensity was weaker. Interestingly, the production of EMMPRIN in osteoclast-like cells of GCT seems to be regulated by stromal-like tumor cells. Receptor activator of NF-kappaB ligand (RANKL), which has been previously shown to be produced by the stromal-like tumor cells for the recruitment of osteoclast-like giant cells in GCT, enhanced the expression of EMMPRIN mRNA during the differentiation of macrophage-like RAW(264.7) cells into osteoclasts. In short, our studies suggest that EMMPRIN may be an important regulatory factor involved in the biological behaviors of GCT. 相似文献
3.
C-reactive protein-induced upregulation of extracellular matrix metalloproteinase inducer in macrophages: inhibitory effect of fluvastatin 总被引:10,自引:0,他引:10
OBJECTIVE: Extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP)-9 were reported to be expressed at the macrophage-rich area in human coronary atherosclerotic plaque. We examined whether C-reactive protein (CRP) activates macrophages to express EMMPRIN and MMP-9 in vitro and whether statins inhibit it. METHODS AND RESULTS: Rat peritoneal macrophages were collected by peritoneal lavage, and were incubated in the presence or absence of CRP. CRP at 5 microg/ml increased the gene expression of EMMPRIN relative to GAPDH, measured by RT-PCR, by 1.67+/-0.07 fold at 24 h and by 1.85+/-0.49 fold at 48 h (both p<0.05). The gene expression of MMP-9 in the presence of CRP at 5 microg/ml was followed by 1.36+/-0.11 fold increase at 24 h and by 3.95+/-0.81 fold at 48 h (both p<0.05). CRP at 5 microg/ml for 48 h increased by 6 fold MMP-9 activity, measured by zymography, without affecting tissue inhibitor of metalloproteinases-1. Boiled CRP at 5 mug/ml for 48 h unaffected MMP-9 activity. Fluvastatin blocked the CRP-induced increases in EMMPRIN and MMP-9 expression and activity. Diphenylene iodonium, an inhibitor of NADPH oxidase, had a similar effect on MMP-9 activity. Fluvastatin suppressed the CRP-induced increases in 8-epi-prostaglandin F(2alpha) levels in the condition media. CONCLUSIONS: CRP is an activator for macrophages to enhance EMMPRIN and MMP-9 expression. Fluvastatin inhibits them presumably through its antioxidant effect. 相似文献
4.
Zavadzkas JA Plyler RA Bouges S Koval CN Rivers WT Beck CU Chang EI Stroud RE Mukherjee R Spinale FG 《American journal of physiology. Heart and circulatory physiology》2008,295(4):H1394-H1402
The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp (n=27) and WT (n=33) mice were examined at 3.2+/-0.1 or at 13.3+/-0.5 mo of age (n=43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54+/-2 vs. 57+/-3 microl), but LV ejection fraction (EF) was reduced (51+/-1 vs. 57+/-1%; P<0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76+/-3 vs. 58+/-3 microl; P<0.05) and LV EF was significantly reduced (45+/-1 vs. 57+/-2%; P<0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values (P<0.05) and were accompanied by a twofold higher collagen content (P<0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium. 相似文献
5.
H. Chandru A. C. Sharada S. Manjunath 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2007,1(4):348-352
Tumor cell derived matrix metalloproteinases are a family of enzymes associated with the tumor invasion and metastasis. Extracellular matrix metalloproteinases inducer (EMMPRIN) stimulates synthesis of gelatinase A (MMP-2) in peritoneal fibroblasts. In the present study the role of MMP-2 and EMMPRIN in the progression of breast cancer has been investigated. Gelatinase-A and EMMPRIN were analyzed in benign as well as in stage II and stage III breast cancer tissue samples by gelatin zymography assay, immunoprecipation analysis and Western blot analysis with a monoclonal primary antibody specific for EMMPRIN. Our results showed over expression of EMMPRIN in advanced stages of breast cancer tissues compared with benign tumor tissue samples. The expression of MMP-2, the active and latent forms of the enzyme increased with tumor progression from Stage II to Stage III of breast cancer and it was not expressed in benign tissues. The expression MMP-2 correlates with tumor progression. This observation obviously indicates that EMMPRIN and MMP-2 are the major determinants of malignancy in cancers. 相似文献
6.
7.
Wei-De Zhong Qing-Biao Chen Yong-Kang Ye Zhao-Dong Han Xue-Cheng Bi Qi-Shan Dai Yu-xiang Liang Guo-Hua Zeng Yue-Sheng Wang Gang Zhu Zhi-Nan Chen Hui-Chan He 《Cancer epidemiology》2010,34(4):478-482
Aim: Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to promote tumor invasion and metastasis via stimulating matrix metalloproteinase synthesis in neighboring fibroblasts, to enhance angiogenesis via vascular endothelial growth factor, to induce chemoresistant tumor cells via the production of hyaluronan, and to confer resistance of cancer cells to anoikis through inhibition of Bim. The purpose of this study was to investigate the expression of EMMPRIN in human primary bladder cancer and to evaluate its prognostic value. Methods: EMMPRIN expression patterns were detected by immunohistochemistry. In order to determine its prognostic value, overall survival (OS) and progression-free survival (PFS) were evaluated using the Kaplan–Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results: Of the 101 cases with bladder cancers, 68 (67.3%) cases were positive for EMMPRIN expression. When categorized into negative vs. positive expression, EMMPRIN was associated with the stage (p = 0.006), the grade (p = 0.002), carcinoma in situ (p = 0.01), the recurrence (p = 0.009), the progression (p = 0.009), and the death (p = 0.01) of patients with bladder cancer. Moreover, positive EMMPRIN expression clearly predicted poorer PFS (p = 0.008) and OS (p = 0.006). In the multivariate analysis, positive EMMPRIN expression was an independent prognostic factor for PFS (p = 0.03) and OS (p = 0.03). Conclusion: EMMPRIN expression was greater in bladder cancers than in the adjacent normal tissues and may be a useful prognostic marker for patients with bladder cancer. 相似文献
8.
Expression of the extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase-2 in bronchopulmonary and breast lesions. 总被引:11,自引:0,他引:11
S Caudroy M Polette J M Tournier H Burlet B Toole S Zucker P Birembaut 《The journal of histochemistry and cytochemistry》1999,47(12):1575-1580
Tumor cells interact with stromal cells via soluble or cell-bound factors stimulating the production of matrix metalloproteinases (MMPs), a group of enzymes largely involved in the extracellular matrix (ECM) remodeling in tumor invasion. Among these factors, extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to stimulate in vitro the fibroblast production of various MMPs such as interstitial collagenase (MMP-1), stromelysin-1 (MMP-3), and gelatinase A (MMP-2). In this study, the EMMPRIN protein was detected by immunohistochemistry prominently in malignant proliferations of the breast and the lung. It was present at the surface of both tumor epithelial and peritumor stromal cells. Because previous studies have reported that stromal cells do not express EMMPRIN mRNAs, it is very likely that EMMPRIN is bound to stromal cells via a specific receptor. Moreover, our observations also demonstrated that the same peritumor stromal cells strongly express MMP-2. Our results show that EMMPRIN is an important factor in tumor progression by causing tumor-associated stromal cells to increase their MMP-2 production, thus facilitating tumor invasion and neoangiogenesis. (J Histochem Cytochem 47: 1575-1580, 1999) 相似文献
9.
Egawa N Koshikawa N Tomari T Nabeshima K Isobe T Seiki M 《The Journal of biological chemistry》2006,281(49):37576-37585
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues. 相似文献
10.
Feldman M La VD Lombardo Bedran TB Palomari Spolidorio DM Grenier D 《Microbes and infection / Institut Pasteur》2011,13(14-15):1261-1269
Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. 相似文献
11.
Birendra Mishra Keiichiro Kizaki Katsuo Koshi Koichi Ushizawa Toru Takahashi Misa Hosoe Takashi Sato Akira Ito Kazuyoshi Hashizume 《Reproductive biology and endocrinology : RB&E》2010,8(1):60
Background
Extracellular matrix metalloproteinase inducer (EMMPRIN) regulates several biological functions involving the modulation of cell behaviors via cell-cell and cell-matrix interactions. According to its diverse functions, we hypothesized that EMMPRIN may play an important role in endometrial remodeling and establishment of pregnancy in cow. 相似文献12.
Extracellular matrix metalloproteinase inducer (CD147) confers resistance of breast cancer cells to Anoikis through inhibition of Bim 总被引:10,自引:0,他引:10
Yang JM O'Neill P Jin W Foty R Medina DJ Xu Z Lomas M Arndt GM Tang Y Nakada M Yan L Hait WN 《The Journal of biological chemistry》2006,281(14):9719-9727
Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN or CD147), a member of the immunoglobulin family and a glycoprotein enriched on the surface of tumor cells, promotes invasion, metastasis, and growth and survival of malignant cells and confers resistance to some chemotherapeutic drugs. However, the molecular mechanisms underlying the actions of EMMPRIN are not fully understood. In this study we sought to determine whether EMMPRIN contributes to the malignant phenotype of breast cancer by inhibiting anoikis, a form of apoptosis induced by loss or alteration of cell-cell or cell-matrix anchorage, and to explore the signaling pathways involved. We found that in the absence of attachment, human breast carcinoma cells expressing high levels of EMMPRIN formed less compact aggregates with larger surface area and less fibronectin matrix assembly, had higher viability, and were resistant to anoikis. Knockdown of EMMPRIN expression by RNA interference (small interfering RNA or short hairpin RNA) sensitized cancer cells to anoikis, as demonstrated by activation of caspase-3, increased DNA fragmentation, and decreased cellular viability. Furthermore, we observed that the accumulation of Bim, a proapoptotic BH3-only protein, was reduced in EMMPRIN-expressing cells and that silencing of EMMPRIN expression elevated Bim protein levels and enhanced cellular sensitivity to anoikis. Treatment of cells with a MEK inhibitor (U0126) or proteasome inhibitor (epoxomicin) also up-regulated Bim accumulation and rendered cells more sensitive to anoikis. These results indicated that expression of EMMPRIN protects cancer cells from anoikis and that this effect is mediated at least in part by a MAP kinase-dependent reduction of Bim. Because anoikis deficiency is a key feature of neoplastic transformation and invasive growth of epithelial cancer cells, our study on the role of EMMPRIN in anoikis resistance and the mechanism involved underscores the potential of EMMPRIN expression as a prognostic marker and novel target for cancer therapy. 相似文献
13.
Matrix metalloproteinases (MMPs) are metal-dependent endopeptidases that play pivotal roles in tumor disease progression. In many solid tumors, MMPs are indeed produced by tumor stromal cells, rather than by tumor cells. This expression pattern is, at least in part, regulated by tumor-stroma interaction via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). In vitro, recombinant EMMPRIN dose-dependently stimulated MMP-1 production by primary human fibroblast cells. Interestingly, in addition to stimulating MMP expression, EMMPRIN also induced its own gene expression. To further explore this potential positive feedback regulatory mechanism, we generated human breast cancer cells expressing different levels of EMMPRIN. Coculture of EMMPRIN-positive tumor cells with fibroblast cells resulted in a concomitant stimulation of MMP-2, MMP-9, and EMMPRIN production. This induction was EMMPRIN dependent, was further enhanced by overexpression, and was reduced by antisense suppression of EMMPRIN expression in tumor cells. Increased expression of membrane-associated EMMPRIN was accompanied by an MMP-dependent generation of a soluble form of EMMPRIN representing a proteolytic cleavage product lacking the carboxyl terminus. On the basis of these findings, we propose a model in which tumor cell-associated EMMPRIN stimulates MMPs, as well as EMMPRIN expression in tumor stroma. Increased MMP activity in tumor local environment results in proteolytic cleavage of membrane-associated EMMPRIN, releasing soluble EMMPRIN. Soluble EMMPRIN in turn acts in a paracrine fashion on stroma cells that are both adjacent and distant to tumor sites to further stimulate the production of MMPs and additional EMMPRIN, which consequently contributes to tumor angiogenesis, tumor growth, and metastasis. 相似文献
14.
Qi J Liu N Zhou Y Tan Y Cheng Y Yang C Zhu Z Xiong D 《Biochemical and biophysical research communications》2006,349(1):303-309
In an attempt to identify novel proteins involved in the emergence of multidrug resistance (MDR) in leukemia cells, we adopted a proteomics approach to analyze protein expression patterns in leukemia cell lines, K562, and its MDR counterpart, K562/A02. Combining high-resolution two-dimensional gel electrophoresis and mass spectrometry, we compared the protein expression profiles between K562 and K562/A02. A total number of 22 protein spots with altered abundances of more than 2-fold were detected and 14 proteins were successfully identified. Consistent with our previous observations by cDNA microarray, sorcin, a 22-kDa calcium-binding protein, was also identified by this proteomic approach with a 10.4-fold up-regulation in K562/A02 cells. Overexpression of sorcin protein in K562 cells by gene transfection led to significantly reduced cytosolic calcium level and increased resistance to cell apoptosis. Further, leukemia cell lines over-expressing sorcin also showed up-regulation of Bcl-2, along with decreased level of Bax. Taken together, our results suggest that sorcin plays an important role in the emergence of MDR in leukemia cells via regulating cell apoptosis pathways, thus may represent both a new MDR marker for prognosis and a good target for anti-MDR drug development. 相似文献
15.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane protein that participates in the processing and degradation of cell surface proteins and the extracellular matrix (ECM). This enzyme regulates ECM turnover in wound repair, promotes cell migration and activates other MMPs, such as MMP-2, which is involved in angiogenesis, cell migration and tumoral metastasis. An increase in pro-inflammatory cytokine expression, such as gamma interferon (IFN-gamma), has been associated with chronic wounds in inflammatory bowel diseases. However, the extent to which cytokines modulate MT1-MMP has not been totally defined. In this report, the effects of the bacterial lipopolysaccharide (LPS) and ECM-bound IFN-gamma on MT1-MMP expression and MMP-2 activity were evaluated by Western blot, RT-PCR and zymography in isolated intestinal epithelial and cultured HT-29 cells. In the presence of LPS, ECM-bound IFN-gamma, but not soluble IFN-gamma, reduced the enterocyte MT1-MMP protein expression. In addition, the active form of MMP-2 was also decreased in the presence of both LPS and IFN-gamma, indicating that lower MMP-2 activity accompanied the decrease in MT1-MMP expression. These results suggest the possibility that endotoxin and ECM-bound IFN-gamma may affect matrix remodeling by modulating matrix metalloproteinase in enterocytes during wound healing. 相似文献
16.
Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells 总被引:4,自引:0,他引:4
Savaraj N Wei Y Unate H Liu PM Wu CJ Wangpaichitr M Xia D Xu HJ Hu SX Tien Kuo M 《Free radical research》2005,39(4):373-381
It has been implicated that reactive oxygen species (ROS) play important roles in modulating tumor progression. However, the mechanisms by which redox-regulated tumor progression are largely unknown. We previously demonstrated that reduced intracellular redox conditions could be achieved in stably transfected small cell lung cancer cells with gamma-glutamylcysteine synthetase (gamma-GCSh) cDNA which encodes a rate-limiting enzyme in the biosynthesis of glutathione (GSH), a major physiological redox regulator. In the present study, using DNA microarray analyses, we compared the expression profiles between the gamma-GCSh-transfected cells and their nontransfected counterpart. We observed downregulation of several matrix metalloproteinases (MMPs), i.e., MMPI and MMP3, and MMP10 in the transfected cells. Dot blot and Northern blot hybridizations confirmed that, among the 18 MMP gene family members and four tissue inhibitors of matrix metalloprotein family (TIMP) analyzed, the expression levels of these three MMPs were consistently reduced. Transiently increased gamma-GCSh expression using tetracycline-inducible gamma-GCSh adenoviral expression system also showed down-regulation of MMP3 and MMP10, but not MMP1. Our results demonstrated that redox regulation of MMP1, MMP3 and MMP10 expression depend upon different modes of redox manipulation. These results bear implication that antioxidant modulation of antitumor progression may be contributed at least in part by the downregulation of a subset of metrix metalloproteins. 相似文献
17.
The multidrug resistance (MDR) is one of the main reasons for chemotherapeutic failures in cancer patients. The overexpression of mdr1 gene product, P-glycoprotein (Pgp), leads to the appearance of resistant tumor cells. In the previous paper (Erokhina, 1997) we have demonstrated that the first stages of Pgp-mediated MDR are accompanied by the reorganization of cytoskeleton elements and the vacuolar system. These data were true for two independently isolated sublines of Syrian hamster embryo fibroblasts transformed by Raus sarcoma virus. In this study, we continued the investigation of the properties of the vacuolar system in Pgp-expressing cells. Brefeldin A (BFA), which is not a Pgp substrate, affects different elements of the vacuolar system and blocks vesicular transport. Our data demonstrate that BFA has different effects on parental and resistant cells. In parental cells, the Golgi apparatus and vesicular transport are sensitive to BFA, while in resistant sublines, BFA affects the vesicular transport but not the Golgi apparatus structure. We discuss the existence of similar and different BFA targets in parental and resistant cells and their role in the evolution of multidrug resistance mechanisms. 相似文献
18.
Abstract. The effect of a cAMP derivative (N6 , 02 -dibutyryl cyclic adenosine 3'3 '-monophosphate: dBcAMP) on the cell cycle and on the synthesis of typical extracellular matrix (ECM) components, i.e. collagen and glycosaminoglycans (GAG), was studied in two hormone-responsive human breast cancer cell lines VHB-1 and MCF-7. The data showed that dBcAMP induced a decrease in the proportion of cells in S + G2 + M phases due to an increase of the non-cycling (Go phase) cell number as revealed by the Ki-67 antigen immunocytochemical study. The collagen synthesis, estimated by [3 H] proline incorporation into the cellular proteins followed by an enzymatic digestion with highly purified bacterial collagenase, was not modified by dBcAMP. In contrast, the GAG synthesis, analysed by [3 H] glucosamine incorporation, was increased two-fold in the dBcAMP treated cells. As a comparison we also tested 4-hydroxy-Tamoxifen (4-OH-Tam) since it induces similar cell cycle perturbations as dBcAMP. However, we did not observe a stimulation of the GAG synthesis following 4-OH-Tam treatment. These data demonstrated that the increased GAG synthesis is due to cAMP and is not a consequence of perturbations in the cell cycle. We can therefore assume that the ECM modifications induced by dBcAMP may contribute to the growth inhibition of the hormone-responsive human breast cancer cells. 相似文献
19.
Germann UA 《Molecular biotechnology》2000,14(2):131-145
The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers
multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression
of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein
represents an important drug target for pharmacological chemosensitizers.
Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells
in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in
many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants
expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure
of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details
means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental
approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein
include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting. 相似文献
20.
《Phytomedicine》2015,22(2):301-307
Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. 相似文献