首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:7,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

2.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

3.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

4.
AIMS: A simple single step technique of gel filtration was developed for the purification of chitinase from Serratia marcescens NK1. METHODS AND RESULTS: Chitinase from Ser. marcescens NK1 was purified to homogeneity by gel filtration chromatography with 9.2% recovery. The enzyme had a pH optimum of 6.2 and a temperature optimum of 47 degrees C. It was stable in a wide pH range of 3.0 to 10.0, retaining 60% activity at pH 3.0 and 65% activity at pH 10.5. It retained 70% activity at 28 degrees C after 72 h and nearly 50% activity at 50 degrees C up to 24 h. CONCLUSION: The chitinase from Ser. marcescens NK1 can be efficiently purified in a single step by gel filtration chromatography. The chitinase of Ser. marcescens NK1, a soil isolate, is highly stable and as active as that of other reported isolates of Ser. marcescens. SIGNIFICANCE AND IMPACT OF THE STUDY: This purification scheme is advantageous because of its simplicity and can therefore be applied for the purification of other enzymes. The yield is sufficient for initial characterization studies of the enzyme, and an improved resolution can be obtained if the chromatography is done under fast flow systems.  相似文献   

5.
A method was developed to purify a 30-kDa protein from jelly fig (Ficus awkeotsang) pericarp, including preparation of jelly curd from achenes, extraction of proteins from the curd, and isolation of the 30-kDa protein by anion-exchanger and gel filtration. Chitinase activity was detected in the purified 30-kDa protein by activity staining in both non-denaturing gel electrophoresis and SDS-PAGE. Isoelectrofocusing showed that the isoelectric point of the 30-kDa protein was lower than pH 3.5. The K(m), k(cat), optimal pH and temperature of this putative chitinase were determined to be 0.076 mM, 0.089 s(-1), pH 4, and 60 degrees C, respectively. The purified 30-kDa protein was thermostable (retaining activity up to 65 degrees C for several hours) and could be stored at 4 degrees C for a year without apparent loss of chitinase activity. Antifungal activity of this putative chitinase was measured in terms of inhibition of Colletotrichum gloeosporioides spore germination.  相似文献   

6.
产气肠杆菌几丁质酶的分离纯化及性质研究   总被引:13,自引:0,他引:13  
从自然罹病死亡的草原毛虫(Gynephorap ruoergnesis)体内分离到一株产气肠杆菌(Enterobacter aerogenes),它在几丁质的诱导下能产生较高活性的几丁质酶。发酵液经硫酸铵盐析、DEAE纤维素柱层析和Sephadex G-100柱层析分离出几丁质酶。用SDSPAGE测得该酶的分子量为425kD。水解几丁质的Km值为2.88mg/mL-1。酶反应的最适温度为55℃,最适pH值为60,金属离子对几丁质酶活性影响较大,其中Zn2+、Ba2+、Ca2+和Mn2+对酶有较强的激活作用,而Hg2+、Co2+和Mg2+则有较强的抑制作用。  相似文献   

7.
An enzyme hydrolyzing nigeran (alternating alpha-1,3- and alpha-1,4-linked glucan) was purified from the culture filtrate of Streptomyces sp. J-13-3, which lysed the cell wall of Aspergillus niger, by percipitation with ammonium sulfate and column chromatographies on DEAE-Sephadex A-50, CM-Sephadex C-50, chromatofocusing, and Sephadex G-100. The final preparation was homogenous in polyacrylamide gel electrophoresis (PAGE). The molecular weight of the enzyme was 68,000 by SDS-PAGE and gel filtration. The optimum pH and temperature for the enzyme activity were 6.0 and 50 degrees C, respectively. The enzyme was stable in the pH range from 6.0 to 8.0 and up to 50 degrees C. The enzyme activity was inhibited significantly by Hg+, Hg2+, and p-chloromercuribenzoic acid. The Km (mg/ml) for nigeran was 3.33. The enzyme specifically hydrolyzed nigeran into nigerose and nigeran tetrasaccharide by an endo-type of action, indicating it to be a mycodextranase (EC 3.2.1.61) that splits only the alpha-1,4-glucosidic linkages in nigeran.  相似文献   

8.
AIM: Purification and characterization of a chitinase from Microbispora sp. V2. METHODS AND RESULTS: The chitinase from Microbispora sp. V2 was purified to homogeneity by gel filtration chromatography with 4.6% recovery. It had a molecular weight of 35 kDa and showed maximum activity towards p-nitrophenyl-beta-d-N,N'-diacetylchitobiose, indicating a chitobiosidase activity. The enzyme had a pH optimum of 3.0 and temperature optimum of 60 degrees C. It was stable in a wide pH range from 3.0 to 11.0, retaining 61% activity at pH 3.0 and 52% activity at pH 11.0. It retained 71% activity at 30 degrees C and 45% activity at 50 degrees C, up to 24 h. The enzyme activity was not inhibited by any of the metal ions tested except Hg2+, in the presence of which only 10% activity was retained. CONCLUSIONS: The 35 kDa chitinase from Microbispora sp. V2 has an acidic pH optimum and a high temperature optimum. It is fairly stable and active, and degrades chitin efficiently, although the growth of the culture and enzyme production is slow. SIGNIFICANCE AND IMPACT OF THE STUDY: This report is the first detailed study of a chitinase from Microbispora sp. V2, isolated from hot springs. The chitinase from Microbispora sp. V2 may have potential applications in the recycling of chitinous wastes, particularly due to its thermophilic and acidophilic character. Studies at molecular level may provide further insight on the chitinolytic system of Microbispora spp. with respect to the number and types of chitinases and their regulation.  相似文献   

9.
A chitinolytic enzyme from Bacillus thuringiensis subsp. aizawai has been purified and its molecular mass was estimated ca. 66 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was able to hydrolyze chitin to chitobiosides but not carboxymethylcellulose, cellulose, pullulan, and laminarin. Optimal pH and temperature were detected at 6 and 50 degrees C, respectively. Stability, in the absence of substrate, was observed at temperatures less than 60 degrees C and pH between 5 and 8. Enzyme activity was significantly inhibited by K+ and EDTA and completely inhibited by Hg2+. Purified chitinase showed lytic activity against cell walls from six phytopathogenic fungi and inhibited the mycelial growth of both Fusarium sp. and Sclerotium rolfsii. The biocontrol efficacy of the enzyme was tested in the protection of bean seeds infested with six phytopathogenic fungi.  相似文献   

10.
Bacillus pumilus SG2 isolated from high salinity ecosystem in Iran produces two chitinases (ChiS and ChiL) and secretes them into the medium. In this study, chiS and chiL genes were cloned in pQE-30 expression vector and were expressed in the cytoplasm of Escherichia coli strain M15. The recombinant proteins were purified using Ni-NTA column. The optimum pH and optimum temperature for enzyme activity of ChiS were pH 6, 50°C; those of ChiL were pH 6.5, 40°C. The purified chitinases showed antifungal activity against Fusarium graminearum, Rhizoctonia solani, Magnaporthe grisea, Sclerotinia sclerotiorum, Trichoderma reesei, Botrytis cinerea and Bipolaris sp. Moreover, purified ChiS was identified as chitinase/lysozyme, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of cell walls with many kinds of bacteria (Xanthomonas translucens pv. hordei, Xanthomonas axonopodis pv. citri, Bacillus licheniformis, E. coli C600, E. coli TOP10, Pseudomonas aeruginosa and Pseudomonas putida). Strong homology was found between the three-dimensional structures of ChiS and a chitinase/lysozyme from Bacillus circulans WL-12. This is the first report of a bifunctional chitinase/lysozyme from B. pumilus.  相似文献   

11.
12.
Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover.  相似文献   

13.
Actinomycetes were screened from soil in the centre of Poland on chitin medium. Amongst 30 isolated strains one with high activity of chitinase was selected. It was identified as Streptomyces sporovirgulis. Chitinase activity was detected from the second day of cultivation, then increased gradually and reached maximum after 4 days. The maximum chitinase production was observed at pH 8.0 and 25–30°C in the medium with sodium caseinate and asparagine as carbon and nitrogen sources and with shrimp shell waste as inducer of enzyme. Chitinase of S. sporovirgulis was purified from a culture medium by fractionation with ammonium sulphate as well as by chitin affinity chromatography. The molecular weight of the enzyme was 27 kDa. The optimum temperature and pH for the chitinase were 40°C and pH 8.0. The enzyme activity was characterised by high stability at the temperatures between 35 and 40°C after 240 min of preincubation. The activity of the enzyme was strongly inhibited in the presence of Pb2+, Hg2+ and stabilized by the ions Mg2+. Purified chitinase from S. sporovirgulis inhibited growth of fungal phytopathogen Alternaria alternata. Additionally, the crude chitinase inhibited the growth of potential phytopathogens such as Penicillium purpurogenum and Penillium sp.  相似文献   

14.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

15.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia. alpha-1,3-Glucanase and chitinase I, which were isolated from the filtrate, did not form the protoplast by itself while a mixture of them showed protoplast-forming activity. Streptomyces cyaneus SP-27 was isolated based on the productivity of chitinase. The culture filtrate of S. cyaneus SP-27 did not form S. commune protoplasts, but addition of it to alpha-1,3-glucanase of B. circulans KA-304 brought about protoplast-forming activity. Chitinase A isolated from the S. cyaneus SP-27 culture filtrate was more effective than chitinase I of B. circulans KA-304 for the protoplast formation in combination with alpha-1,3-glucanase. The N-terminal amino acid sequence of chitinase A (MW 29,000) has a sequential similarity to those of several Streptomycete family 19 chitinases. Chitinase A adsorbed to chitinous substrate and inhibited the growth of Trichoderma reesei mycelia. Anomer analysis of the reaction products also suggested that the enzyme is a family 19 chitinase.  相似文献   

16.
A chitinase was purified from the culture filtrate of Streptomyces thermoviolaceus OPC-520. The enzyme showed a high optimum temperature (70 to 80 degrees C), a high optimum pH level (8.0 to 10.0), and heat stability. This enzyme showed high sequence homology with chitinases from Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

17.
A chitinase encoding gene from Bacillus sp. DAU101 was cloned in Escherichia coli. The nucleotide sequencing revealed a single open reading frame containing 1781 bp and encoding 597 amino acids with 66 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram. The chitinase was composed of three domains: a catalytic domain, a fibronectin III domain, and a chitin binding domain. The chitinase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 7.5 and 60 degrees C, respectively. The metal ions, Zn(2+), Cu(2+), and Hg(2+), were strongly inhibited chitinase activity. However, chitinase activity was increased 1.4-fold by Co(2+). Chisb could hydrolyze GlcNAc(2) to N-acetylglucosamine and was produced GlcNAc(2), when chitin derivatives were used as the substrate. This indicated that Chisb was a bifunctional enzyme, N-acetylglucosaminase and chitobiosidase. The enzyme could not hydrolyze glycol chitin, glycol chitosan, or CMC, but hydrolyzed colloidal chitin and soluble chitosan.  相似文献   

18.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

19.
A chitinase (EC. 3.2.1.14) from autolysed culture filtrate of Penicillium oxalicum was purified by precipitation with ammonium sulphate, gel filtration and ion exchange chromatographies. The purified enzyme showed a single protein band in SDS gel electrophoresis. The enzyme is an acidic protein with a pI of 4.5 and has a molecular weight of 54 900 as estimated from SDS gel electrophoresis and 21 500 from gel filtration. The optimum pH and temperature were 5.0 and 35°C, respectively. The enzyme was stable at temperatures up to 45°C and in a pH range between 4.0 and 6.0. The Km was 2.5 mg ml-1 for colloidal chitin, Hg2+ and Ag+ were effective inhibitors. The viscosimetric study carried out using carboxymethyl chitin as substrate revealed the endotype action of this enzyme.  相似文献   

20.
An arabinogalactan 4-beta-D-galactanohydrolase was purified to a homogeneous state from the culture filtrate of a strain of Bacillus subtilis. The enzyme have a molecular mass of 36 kDa and an isoelectric point of pH 7.9. The enzyme is most active at around pH 6.5-7 and at 60 degrees C, and is stable between pH 6-10 and below 55 degrees C. Hg2+ and Cu2+ inhibit the activity. The enzyme hydrolyze soybean arabinogalactan which contains beta-1,4-galactosidic linkages in its main chain structure, but not other polysaccharides with beta-1,3-galactosidic linkages. The hydrolysis products from soybean arabinogalactan are predominantly galactobiose with a small amount of galactotetraose. The enzyme is an exo-enzyme and the ability to transfer galactobiose to other galactobiose molecules is indicated by the formation of galactotetraose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号