首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrazole and propenone quinoxaline derivatives were tested against intracellular forms of Leishmania peruviana and Trypanosoma cruzi. Both series were tested for toxicity against proliferative and non-proliferative cells. The pyrazole quinoxaline series was quite inactive against T. cruzi; however, the compound 2,6-dimethyl-3-f-quinoxaline 1,4-dioxide was found to inhibit 50% of Leishmania growth at 8.9 μM, with no impact against proliferative kidney cells and with low toxicity against THP-1 cells and murine macrophages. The compounds belonging to the propenone quinoxaline series were moderately active against T. cruzi. Among these compounds, two were particularly interesting, (2E)-1-(7-fluoro-3-methyl-quinoxalin-2-yl)-3-(3,4,5-trimethoxy-phenyl)-propenone and (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-quinoxalin-2-yl)-propenone. The former possessed selective activity against proliferative cells (cancer and parasites) and was inactive against murine peritoneal macrophages; the latter was active against Leishmania and inactive against the other tested cells. Furthermore, insilico studies showed that both series respected Lipinski’s rules and that they confirmed a linear correlation between trypanocidal activities and LogP. Docking studies revealed that compounds of the second series could interact with the poly (ADP-ribose) polymerase protein of Trypanosoma cruzi.  相似文献   

2.
Kierszenbaum F., Lima M. F. and Wirth J. J. 1985. Effects of antiserum to Trypanosoma cruzi on the uptake and rate of killing of vector-borne, metacyclic forms of the parasite by macrophages. International Journal for Parasitology15: 409–413. The contribution of phagocytic function to host defense against infection with metacyclic forms of Trypanosoma cruzi isolated from insect vectors was investigated in mice passively transferred with anti-T. cruzi serum. The protective effect resulting from the passive transfers was significantly reduced by administration of either silica or cobra venom factor (CVF). A more pronounced curtailment of the protective effect was seen when both silica and CVF were administered to the mice. This effect was greater than that calculated by adding the effects produced by silica and CVF alone. In in vitro experiments, presence of anti-T. cruzi antibodies enhanced the capacity of mouse macrophages to take up the metacyclic organisms and increased the proportion of macrophages associating with the parasites. Increased macrophage-parasite association was also seen when either the flagellates or the macrophages were preincubated with the antiserum. Antibody-treated metacyclic forms of T. cruzi were more rapidly cleared by untreated macrophages than parasites pretreated with normal mouse serum. These results support a role for macrophages in host defense against the form of T. cruzi responsible for natural infections and emphasize the role played by anti-T. cruzi antibodies. The combined effect of the silica and CVF treatments suggests that C activity may contribute to the protective action of antibodies through its opsonic properties, though a concomitant role for C-dependent immune lysis cannot be ruled out. These results highlight the protective role of antibodymediated mechanisms against infection with the form of T. cruzi responsible for natural infections.  相似文献   

3.
In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.  相似文献   

4.
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3‐hydroxy‐4‐methoxybenzamide ( 9 ) and 2,3‐dihydro‐2,2‐dimethyl‐4(1H)‐quinazolinone ( 15 ) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine ( 2 ) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.  相似文献   

5.
Nifurtimox and benznidazole are the only active drugs against Trypanosoma cruzi; however, they have limited efficacy and severe side effects. During primoinfection, T. cruzi infected macrophages mount an antiparasitic response, which the parasite evades through an increase of tumor growth factor β and PGE2 activation as well as decreased iNOS activity. Thus, prostaglandin synthesis inhibition with aspirin might increase macrophage antiparasitic activity and increase nifurtimox and benznidazole effect.Aspirin alone demonstrated a low effect upon macrophage antiparasitic activity. However, isobolographic analysis of the combined effects of aspirin, nifurtimox and benznidazole indicated a synergistic effect on T. cruzi infection of RAW cells, with combinatory indexes of 0.71 and 0.61, respectively.The observed effect of aspirin upon T. cruzi infection was not related with the PGE2 synthesis inhibition. Nevertheless, NO levels were restored by aspirin in T. cruzi-infected RAW cells, contributing to macrophage antiparasitic activity improvement.Thus, the synergy of aspirin with nifurtimox and benznidazole is due to the capability of aspirin to increase antiparasitic activity of macrophages.  相似文献   

6.
Hundreds of millions of people worldwide are affected by Chagas’ disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 μM against epimastigotes and 0.41 vs. 4.88 μM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (−3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.  相似文献   

7.
《Phytomedicine》2015,22(11):969-974
BackgroundThe current treatment of Chagas disease, endemic in Latin America and emerging in several countries, is limited by the frequent side effects and variable efficacy of benznidazole. Natural products are an important source for the search for new drugs.Aim/hypothesisConsidering the great potential of natural products as antiparasitic agents, we investigated the anti-Trypanosoma cruzi activity of a concentrated ethanolic extract of Physalis angulata (EEPA).MethodsCytotoxicity to mammalian cells was determined using mouse peritoneal macrophages. The antiparasitic activity was evaluated against axenic epimastigote and bloodstream trypomastigote forms of T. cruzi, and against amastigote forms using T. cruzi-infected macrophages. Cell death mechanism was determined in trypomastigotes by flow cytometry analysis after annexin V and propidium iodide staining. The efficacy of EEPA was examined in vivo in an acute model of infection by monitoring blood parasitaemia and survival rate 30 days after treatment. The effect against trypomastigotes of EEPA and benznidazole acting in combination was evaluated.ResultsEEPA effectively inhibits the epimastigote growth (IC50 2.9 ± 0.1 µM) and reduces bloodstream trypomastigote viability (EC50 1.7 ± 0.5 µM). It causes parasite cell death by necrosis. EEPA impairs parasite infectivity as well as amastigote development in concentrations noncytotoxic to mammalian cells. In mice acutely-infected with T. cruzi, EEPA reduced the blood parasitaemia in 72.7%. When combined with benznidazole, EEPA showed a synergistic anti-T. cruzi activity, displaying CI values of 0.8 ± 0.07 at EC50 and 0.83 ± 0.1 at EC90.ConclusionEEPA has antiparasitic activity against T. cruzi, causing cell death by necrosis and showing synergistic activity with benznidazole. These findings were reinforced by the observed efficacy of EEPA in reducing parasite load in T. cruzi-mice. Therefore, this represents an important source of antiparasitic natural products.  相似文献   

8.
Forty six new 1,4-epoxy-2-exo-aryl- and cis-2-aryl-4-hydroxytetrahydro-1-benzazepine derivatives were synthesized and fully characterized. All compounds were tested in vitro against both Trypanosoma cruzi and Leishmania chagasi parasites and also for cytotoxicity using Vero and THP-1 mammalian cell lines. Many of the evaluated compounds showed remarkable activity against the epimastigote and intracellular amastigote forms of T. cruzi, with IC50 values comparable with that of control drug nifurtimox, a nitrofuran derivative currently used in the treatment of Chagas’ disease. Other derivatives were found to have good activity against L. chagasi promastigotes, with low toxicity against the mammalian cells, but neither of them was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   

9.
The hexane extract from aerial parts Baccharis sphenophylla Dusén ex Malme (Asteraceae) displayed activity against amastigote forms of Trypanossoma cruzi and was subjected to chromatographic steps to afford one unreported – 7α-hydroxy-ent-abieta-8(14),13(15)-dien-16,12β-olide ( 1 ) and three known diterpenes – ent-kaur-16-en-19-oic acid, ( 2 ), grandifloric acid ( 3 ), and 15β-tiglinoyloxy-ent-kaur-16-en-19-oic acid ( 4 ), two sesquiterpenes – spathulenol ( 5 ) and oplopanone ( 6 ) – as well as hexacosyl p-coumarate ( 7 ). Isolated compounds were characterized by NMR and ESI-HR-MS spectra and were evaluated in vitro for activity against amastigote forms of the parasite T. cruzi – the relevant clinical form in the chronic phase of Chagas disease. In addition, the activity of compounds 1 – 7 against NCTC cells was evaluated. Compounds 1 and 7 showed effectiveness with EC50 values of 21.3 and 16.9 μM, respectively. Both compounds also exhibited reduced toxicity against NCTC cells (CC50>200 μM) with SI values higher than 9.4 and 11.9. Obtained results suggest that the new ent-abietane diterpene 1 and alkyl coumarate 7 could be used as prototypes for the development of novel and selective semisynthetic derivatives against intracellular forms of T. cruzi.  相似文献   

10.
Human peripheral mononuclear cells were cytotoxic to antibody-sensitized Trypanosoma cruzi epimastigotes. The cytotoxic effect depended on the concentration of effector cells and antiserum, and was progressive until 17 hr of incubation at 28 °C. After 3 hr of incubation the highest specific activity was achieved at a 50:1 effector to target cell ratio. A nonspecific cytotoxic effect in the absence of antiserum was observed at a 100:1 parasite to cell ratio or after 17 hr of incubation. When the human mononuclear cell population was depleted of adherent cells by Sephadex G-10 filtration or adsorption to glass, the cytotoxic effect was greatly reduced. Similar results were obtained using mouse spleen cells, indicating that only the adherent cells were cytotoxic to sensitized T. cruzi in both systems. When human mononuclear cells were incubated with amobarbital, cyanide, azide, or aminotriazole, an inhibition of cytotoxicity against sensitized T. cruzi was observed, suggesting that oxygen reduction products and myeloperoxidase were involved in the destruction of sensitized T. cruzi epimastigotes by normal human mononuclear cells.  相似文献   

11.
New 5-nitroindazole derivatives were developed and their antichagasic properties studied. Eight compounds (14–18, 20, 26 and 28) displayed remarkable in vitro activities against Trypanosoma cruzi (T. cruzi). Its unspecific cytotoxicity against macrophages was evaluated being not toxic at a concentration at least twice that of T. cruzi IC50, for some derivatives. The electrochemical studies, parasite respiration studies and ESR experiment showed that 5-nitroindazole derivatives not be able to yield a redox cycling with molecular oxygen such as occurs with nifurtimox (Nfx). The study on the mechanism of action proves to be related to the production of reduced species of the nitro moiety similar to that observed with benznidazole.  相似文献   

12.
Trypanosoma cruzi is the etiological agent of Chagas disease, an important neglected illness affecting about 12–14 million people in endemic areas of Latin America. The chemotherapy of Chagas disease is quite unsatisfactory mainly due to its poor efficacy especially during the later chronic phase and the considerable well-known side effects. These facts emphasize the need to search for find new drugs. Diamidines and related compounds are minor groove binders of DNA at AT-rich sites and present excellent anti-trypanosomal activity. In the present study, six novel aromatic amidine compounds (arylimidamides and diamidines) were tested in vitro to determine activity against the infective and intracellular stages of T. cruzi, which are responsible for sustaining the infection in the mammalian hosts. In addition, their selectivity and toxicity towards primary cultures of cardiomyocyte were evaluated since these cells represent important targets of infection and inflammation in vivo. The aromatic amidines were active against T. cruzi in vitro, the arylimidamide DB1470 was the most effective compound presenting a submicromolar LD50 values, good selectivity index, and good activity at 4 °C in the presence of blood constituents. Our results further justify trypanocidal screening assays with these classes of compounds both in vitro and in vivo in experimental models of T. cruzi infection.  相似文献   

13.
The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.  相似文献   

14.
Trypanosoma cruzi is the agent of Chagas disease, an infection that affects around 8 million people worldwide. The search for new anti-T. cruzi drugs are relevant, mainly because the treatment of this disease is limited to two drugs. The objective of this study was to investigate the trypanocidal and cytotoxic activity and elucidate the chemical profile of extracts from the roots of the Lonchocarpus cultratus. Roots from L. cultratus were submitted to successive extractions with hexane, dichloromethane, and methanol, resulting in LCH, LCD, and LCM extracts, respectively. Characterization of extracts was done using 1H-RMN, 13C-RMN, CC and TLC. Treatment of T. cruzi forms (epimastigotes, trypomastigotes, and amastigotes) with crescent concentrations of LCH, LCD, and LCM was done for 72, 48, and 48 h, respectively. After this, the percentage of inhibition and IC50/LC50 were calculated. Benznidazole was used as a positive control. Murine macrophages were treated with different concentrations of both extracts for 48 h, and after, the cellular viability was determined by the MTT method and CC50 was calculated. The chalcones derricin and lonchocarpine were identified in the hexane extract, and for the first time in the genus Lonchocarpus, the presence of a dihydrolonchocarpine derivative was observed. Other chalcones such as isocordoin and erioschalcone B were detected in the dichloromethane extract. The dichloromethane extract showed higher activity against all tested forms of T. cruzi than the other two extracts, with IC50 values of 10.98, 2.42, and 0.83 µg/mL, respectively; these values are very close to those of benznidazole. Although the dichloromethane extract presented a cytotoxic effect against mammalian cells, it showed selectivity against amastigotes. The methanolic extract showed the lowest anti-T. cruzi activity but was non-toxic to peritoneal murine macrophages. Thus, the genus Lonchocarpus had demonstrated in the past action against epimastigotes forms of T. cruzi but is the first time that the activity against infective forms is showed, which leading to further studies with in vivo tests.  相似文献   

15.
ABSTRACT. Mouse peritoneal macrophages exposed to the RNA from the spleens of mice infected with Trypanosoma cruzi (iRNA) exhibit enhanced resistance to this parasite. The poly(A)-containing iRNA was found to be the active fraction. No such activity was observed in macrophages incubated with RNA from normal mice (nRNA) or with synthetic poly A.  相似文献   

16.
Trypanosoma cruzi is a hemoflagellate protozoan that causes Chagas’ disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host. Herein, we performed a functional assessment of mitochondrial metabolism in the following two distinct evolutive forms of T. cruzi: the insect stage epimastigote and the freshly isolated bloodstream trypomastigote. We observed that in comparison to epimastigotes, bloodstream trypomastigotes facilitate the entry of electrons into the electron transport chain by increasing complex II-III activity. Interestingly, cytochrome c oxidase (CCO) activity and the expression of CCO subunit IV were reduced in bloodstream forms, creating an “electron bottleneck” that favored an increase in electron leakage and H2O2 formation. We propose that the oxidative preconditioning provided by this mechanism confers protection to bloodstream trypomastigotes against the host immune system. In this scenario, mitochondrial remodeling during the T. cruzi life cycle may represent a key metabolic adaptation for parasite survival in different hosts.  相似文献   

17.
The aim of this study was to evaluate the efficacy of vaccine using replication-deficient human recombinant Type 5 replication-defective adenoviruses (AdHu5) carrying sequences of the amastigote surface protein 2 (ASP2) (AdASP2) in mice infected with the Trypanosoma cruzi ( T cruzi) Y strain. A total of 16 A/Sn mice female were distributed into four groups, as follows (n = 4 per group): Group 1 – Control Group (CTRL); Group 2 – Infected Group (TC): animals were infected by subcutaneous route with 150 bloodstream trypomastigotes of T cruzi Y strain; Group 3 – Immunized Group (AdASP-2): animals were immunized by intramuscular injection (im) route with 50 µL of AdSP-2 (2 × 10 8 plaque forming units [pfu]/cam) at day 0; Group 4-Immunized and Infected Group (AdASP-2+TC): animals were immunized by im route with 50 µL of ASP-2 (2 × 10 8 pfu/cam) and infected by T cruzi at the same day (day 0). It was observed a significant decrease of nests in the group that was immunized with AdASP-2 and infected on the same day. Tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) gene expressions showed a significant increase in the AdASP-2+TC group when compared to TC group, but it was noted that Cyclooxygenase-2 (Cox-2) was increased in TC group when compared to AdASP-2+TC group. Increase of matrix metalloproteinases-2 (MMP-2) and decrease of MMP-9 immunoexpression in the AdASP-2+TC group was noticed as well. Oxidative DNA damage was present in myocardium for AdASP-2+TC group as a result of 8-hydroxydeoxyguanosine immunoexpression. Taken together, our results highlighted an increased oxidative stress, MMP-2 activity and inflammatory host response promoted by AdASP-2 against T cruzi infection.  相似文献   

18.
Chagas disease remains a serious public health problem in several Latin American countries. New chemotherapy is urgently needed since current drugs are limited in efficacy and exhibit undesirable side effects. Aromatic diamidines and analogs are well known anti-parasitic agents and in this study, we have evaluated the in vitro trypanocidal effect of several different heterocyclic cationic compounds, including diamidines (DB1195, DB1196 and DB1345), a monoamidine (DB824), an arylimidamide (DB613A) and a guanylhydrazone (DB1080) against amastigotes and bloodstream trypomastigotes of Trypanosoma cruzi, the etiological agent of Chagas disease. Our present findings showed that all compounds exerted, at low-micromolar doses, a trypanocidal effect upon both intracellular parasites and bloodstream trypomastigotes of T. cruzi. The activity of DB1195, DB1345, DB824 and DB1080 against bloodstream forms was reduced when these compounds were assayed in the presence of mouse blood possibly due to their association with plasma constituents and/or due to metabolic instability of the compounds. However, trypanocidal effects of DB613A and DB1196 were not affected by plasma constituents, suggesting their potential application in the prophylaxis of banked blood. In addition, potency and selectivity of DB613A, towards intracellular parasites, corroborate previous results that demonstrated the highly promising activity of arylimidamides against this parasite, which justify further studies in experimental models of T. cruzi infection.  相似文献   

19.
A series of novel benzoimidazo and N-aryl-5-oxo-imidazo[1,2-b]isoquinoline-10-carbothioamides was developed. All the compounds were evaluated for their in vitro action against the epimastigote form of Trypanosoma cruzi. Four of them showed higher activity than Nifurtimox. Their unspecific cytotoxicity was evaluated using HeLa and L6 cells, being non-toxic at concentrations at least 15 and 200 times higher than that of T. cruzi IC50. To gain insight into the mechanism of action, their DNA binding properties and reactivity with glutathione were studied, and QSAR study was performed.  相似文献   

20.
Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号