首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic progenitors as well as in differentiated glia. During embryonic development of the murine cerebral cortex, HOF expression is restricted to the hippocampal subdivision. Expression coincides with early differentiation of presumptive CA1 and CA3 pyramidal neurons and dentate gyrus granule cells, with a sharp decline in expression at the CA1/subicular border. By using bromodeoxyuridine labeling and immunohistochemistry, we show that HOF expression coincides with immature non-dividing cells and is down-regulated in differentiated cells, suggesting a role for HOF in hippocampal neurogenesis. Consistent with the postulated role of the POZ domain as a site for protein-protein interactions, both HOF isoforms are able to dimerize. The HOF zinc fingers bind specifically to the binding site for the related promyelocytic leukemia zinc finger protein as well as to a newly identified DNA sequence.  相似文献   

4.
5.
Tristetraprolin (TTP) is the prototype of a family of CCCH tandem zinc finger proteins that can bind to AU-rich elements in mRNAs and promote their decay. TTP binds to mRNA through its central tandem zinc finger domain; it then promotes mRNA deadenylation, considered to be the rate-limiting step in eukaryotic mRNA decay. We found that TTP and its related family members could bind to certain isoforms of another AU-rich element-binding protein, HNRNPD/AUF1, as well as a related protein, laAUF1. The interaction domain within AUF1p45 appeared to be a C-terminal "GY" region, and the interaction domain within TTP was the tandem zinc finger domain. Surprisingly, binding of AUF1p45 to TTP occurred even with TTP mutants that lacked RNA binding activity. In cell extracts, binding of AUF1p45 to TTP potentiated TTP binding to ARE-containing RNA probes, as determined by RNA gel shift assays; AUF1p45 did not bind to the RNA probes under these conditions. Using purified, recombinant proteins and a synthetic RNA target in FRET assays, we demonstrated that AUF1p45, but not AUF1p37, increased TTP binding affinity for RNA ~5-fold. These data suggest that certain isoforms of AUF1 can serve as "co-activators" of TTP family protein binding to RNA. The results raise interesting questions about the ability of AUF1 isoforms to regulate the mRNA binding and decay-promoting activities of TTP and its family members as well as the ability of AUF1 proteins to serve as possible physical links between TTP and other mRNA decay proteins and structures.  相似文献   

6.
The SP-RING or Miz zinc finger domain that is related to the classical RING-finger motif, defines a class of proteins that can act as E3-like factors in the pathway of small ubiquitin-related modifier (SUMO) conjugation. This family includes the mammalian protein inhibitor of activated STAT (PIAS) proteins and related proteins from lower eukaryotes. Here we report the existence of a gene in Leishmania infantum, present as two identical copies placed upstream of each MAT2 gene copy, and transcribed as a single approximately 2.2 kb mRNA both in the logarithmic and stationary phases of the promastigote stage. This gene encodes a 47 kDa protein that has been named LORIEN. LORIEN is circumscribed to the cell periphery and it is antigenic during L. infantum infection of dogs and hamsters. Strikingly, this novel protein contains a highly conserved SP-RING/Miz zinc finger domain, raising the possibility that a SUMO or ubiquitin-like system may exist in this microorganism.  相似文献   

7.
We have isolated the DNMT3L gene that is related to the cytosine-5-methyltransferase 3 (DNMT3) family. The gene is located on chromosome 21q22.3 between the AIRE and the KIAA0653 genes and spans approximately 16 kb of genomic sequence. The encoded protein of 387 amino acids has a cysteine-rich region containing a novel-type zinc finger domain that is conserved in DNMT3A and DNMT3B but also in ATRX, a member of the SNF2 protein family. The novel domain, called an ADD (ATRX, DNMT3, DNMT3L)-type zinc finger, contains two subparts: a C2C2 and an imperfect PHD zinc finger. Expression of the DNMT3L mRNA was not detectable by Northern blotting; however, RT-PCR amplification revealed that it is expressed at low levels in several tissues including testis, ovary, and thymus.  相似文献   

8.
9.
10.
Smad-interacting protein-1 (SIP1), also known as deltaEF2, ZEB2 and zfhx1b, is essential for the formation of the neural tube and the somites. Overexpression of Xenopus SIP1 causes ectopic neural induction via inhibition of bone morphogenetic protein (BMP) signaling and inhibition of Xbra expression. Here, we report the functional analyses of 4 domain-deletion mutants of XSIP1. Deletion of the N-terminus zinc finger domain suppressed neural induction and BMP inhibition, but these were not affected by deletion of the other domains (the Smad binding domain, the DNA-binding homeodomain together with the CtBP binding site and the C-terminus zinc finger). Therefore SIP1 does not inhibit BMP signaling by binding to Smad proteins. In contrast, all of the deletion constructs inhibited Xbra expression. These results suggest that the N-terminus zinc finger domain of XSIP1 has an important role in neural induction and that Xbra suppression occurs via a mechanism separate from the neural inducing activity.  相似文献   

11.
12.
13.
Members of the tristetraprolin family of CCCH tandem zinc finger proteins bind to AU-rich elements in certain cellular mRNAs, leading to their deadenylation and destabilization. Studies in knock-out mice demonstrated roles for three of the family members, tristetraprolin, ZFP36L1, and ZFP36L2, in inflammation, chorioallantoic fusion, and early embryonic development, respectively. However, little is known about a recently discovered placenta-specific tristetraprolin family member, ZFP36L3. Tristetraprolin, ZFP36L1, and ZFP36L2 have been shown to shuttle between the nucleus and cytoplasm, using typical hydrophobic amino acid-rich nuclear export sequences, and nuclear localization sequences located within the tandem zinc finger domain. In contrast, we previously showed that green fluorescent protein-labeled ZFP36L3, expressed in HEK 293 cells, remained cytosolic, even in the presence of the nuclear export blocker leptomycin B. We show here that the conserved tandem zinc finger domain contains an active nuclear localization signal. However, the sequence corresponding to the nuclear export signal in the other family members was nonfunctional, and thus did not contribute to the cytosolic localization. The unique C-terminal repeat domain could override the activity of the nuclear localization sequence, preventing the import of ZFP36L3 into the nucleus. Immunostaining of mouse placenta demonstrated that ZFP36L3 was located only in the cytoplasm of trophoblast cells. Thus, in contrast to the other mammalian members of this protein family, ZFP36L3 is a "full-time" cytosolic protein, rather than a nucleocytoplasmic shuttling protein. The significance of this difference in subcellular localization to the physiology of placental trophoblast cells, where ZFP36L3 is selectively expressed, remains to be determined.  相似文献   

14.
15.
16.
17.
18.
19.
We report the deduced amino acid sequences of two alternately spliced isoforms, designated DEFCAP-L and -S, that differ in 44 amino acids and encode a novel member of the mammalian Ced-4 family of apoptosis proteins. Similar to the other mammalian Ced-4 proteins (Apaf-1 and Nod1), DEFCAP contains a caspase recruitment domain (CARD) and a putative nucleotide binding domain, signified by a consensus Walker's A box (P-loop) and B box (Mg(2+)-binding site). Like Nod1, but different from Apaf-1, DEFCAP contains a putative regulatory domain containing multiple leucine-rich repeats (LRR). However, a distinguishing feature of the primary sequence of DEFCAP is that DEFCAP contains at its NH(2) terminus a pyrin-like motif and a proline-rich sequence, possibly involved in protein-protein interactions with Src homology domain 3-containing proteins. By using in vitro coimmunoprecipitation experiments, both long and short isoforms were capable of strongly interacting with caspase-2 and exhibited a weaker interaction with caspase-9. Transient overexpression of full-length DEFCAP-L, but not DEFCAP-S, in breast adenocarcinoma cells MCF7 resulted in significant levels of apoptosis. In vitro death assays with transient overexpression of deletion constructs of both isoforms using beta-galactosidase as a reporter gene in MCF7 cells suggest the following: 1) the nucleotide binding domain may act as a negative regulator of the killing activity of DEFCAP; 2) the LRR/CARD represents a putative constitutively active inducer of apoptosis; 3) the killing activity of LRR/CARD is inhibitable by benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone and to a lesser extent by Asp-Glu-Val-Asp (OMe)-fluoromethyl ketone; and 4) the CARD is critical for killing activity of DEFCAP. These results suggest that DEFCAP is a novel member of the mammalian Ced-4 family of proteins capable of inducing apoptosis, and understanding its regulation may elucidate the complex nature of the mammalian apoptosis-promoting machinery.  相似文献   

20.
The lymphocyte-specific DNA-binding protein LyF-1 interacts with a critical control element in the terminal deoxynucleotidyltransferase (TdT) promoter as well as with the promoters for other genes expressed during early stages of B- and T-cell development. We have purified LyF-1 and have obtained a partial amino acid sequence from proteolytic peptides. The amino acid sequence suggests that LyF-1 is a zinc finger protein encoded by the Ikaros gene, which previously was implicated in T-cell development. Recombinant Ikaros expressed in Escherichia coli bound to the TdT promoter, and antisera directed against the recombinant protein specifically blocked the DNA-binding activity of LyF-1 in crude extracts. Further analysis revealed that at least six distinct mRNAs are derived from the Ikaros/LyF-1 gene by alternative splicing. Only two of the isoforms possess the N-terminal zinc finger domain that is necessary and sufficient for TdT promoter binding. Although both of these isoforms bound to similar sequences in the TdT, lambda 5, VpreB, and lck promoters, one isoform contains an additional zinc finger that resulted in altered recognition of some binding sites. At least four of the Ikaros/LyF-1 isoforms were detectable in extracts from B- and T-cell lines, with the relative amounts of the isoforms varying considerably. These data reveal that the LyF-1 protein is encoded by specific mRNAs derived from the alternatively-spliced Ikaros gene, suggesting that this gene may be important for the early stages of both B- and T-lymphocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号