首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.  相似文献   

8.
A novel protein phosphatase in Arabidopsis thaliana was identified by database searching. This protein, designated AtPTPKIS1, contains a protein tyrosine phosphatase (PTP) catalytic domain and a kinase interaction sequence (KIS) domain. It is predicted to interact with plant SNF1-related kinases (SnRKs), representing central regulators of metabolic and stress responses. AtPTPKIS1 has close homologues in other plant species, both dicots and monocots, but is not found in other kingdoms. The tomato homologue of AtPTPKIS1 was expressed as a recombinant protein and shown to hydrolyse a generic phosphatase substrate, and phosphotyrosine residues in synthetic peptides. The KIS domain of AtPTPKIS1 was shown to interact with the plant SnRK AKIN11 both in vivo in the yeast two-hybrid system, and in vitro in a GST-fusion 'pull down' assay. The genomes of Arabidopsis and other plants contain further predicted proteins related to AtPTPKIS1, which could also interact with SnRKs and act in novel regulatory and signalling pathways.  相似文献   

9.
10.
11.
J Boyes  A Bird 《Cell》1991,64(6):1123-1134
  相似文献   

12.
13.
14.
15.
Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号