首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang Y  Li N  Liboni K  Neu J 《Cytokine》2003,22(3-4):77-83
Glutamine (Gln) supplementation has been shown to decrease production of pro-inflammatory cytokines by the human intestinal mucosa. The mechanism of this is poorly understood. We hypothesize that Gln down-regulates lipopolysaccharide (LPS)-stimulated pro-inflammatory cytokine production in Caco-2 cells by nuclear factor-kappa B (NF-kappaB). Caco-2 cells were incubated with different concentrations of Gln with or without methionine sulfoximine (MS, an inhibitor of glutamine synthetase) before stimulation with LPS. IL-6, IL-8, IL-10 and TNF-alpha protein and mRNA level were determined. NF-kappaB translocation was determined using an ELISA-based kit. IL-8 was the only detectable cytokine/chemokine. The largest amount of IL-8 was secreted by cells in the presence of MS with no Gln in the medium after exposure to LPS. LPS increased IL-8 production, peaking 10h after LPS administration. The addition of Gln (0.5 or 5.0mM) decreased IL-8 peptide and mRNA expression. LPS increased NF-kappaB nuclear translocation in the presence or absence of MS. Neither Gln nor MS altered NF-kappaB nuclear translocation. These results indicate that the lack of glutamine increases IL-8 production by Caco-2 cells after LPS stimulation. However, the glutamine-mediated decrease in LPS-stimulated IL-8 production is not associated with NF-kappaB p50 nuclear binding.  相似文献   

2.
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.  相似文献   

3.
4.
p38MAPK介导的胶质细胞iNOS的转录激活机制   总被引:6,自引:2,他引:4  
丝裂原激活蛋白激酶(MAPK)酶级联反应系统参与胶质细胞中iNOS的合成.通过瞬时转染p38MAPK途径中上游激酶,MAPK激酶3(MKK3)和MAPK激酶6 (MKK6 )表达质粒,进一步了解p38MAPK级联传导信号系统调节iNOS基因在胶质细胞中的转录激活机制.MKK3或MKK6表达质粒与接有荧光素酶(luciferase ,Luc)的大鼠iNOS启动基因质粒(iNOS Luc)联合转染C6星形胶质细胞株引起iNOS Luc的激活,并且使细胞因子诱导的iNOSmRNA的表达增强.这两种效应都能够被p38MAPK抑制剂SB2 0 35 80所抑制.MKK3 6也可以诱导核因子κB(NFκB Luc)依赖的转录活性.这些分子水平的研究结果为p38MAPK信号级联传导途径在调节大鼠胶质细胞中iNOS基因转录激活中的重要作用,包括转录因子NFκB的作用提供了证据.通过阻断iNOS表达或NO的生成,抑制细胞炎症发生,为防治神经细胞炎症反应性疾病提供实验依据.  相似文献   

5.
6.
The p38 mitogen-activated protein kinase (MAPK) participates in intracellular signaling cascades resulting in inflammatory responses. Therefore, inhibition of the p38 MAPK pathway may form the basis of a new strategy for treatment of inflammatory diseases. However, p38 MAPK activation during systemic inflammation in humans has not yet been shown, and its functional significance in vivo remains unclear. Hence, we exposed 24 healthy male subjects to an i.v. dose of LPS (4 ng/kg), preceded 3 h earlier by orally administered 600 or 50 mg BIRB 796 BS (an in vitro p38 MAPK inhibitor) or placebo. Both doses of BIRB 796 BS significantly inhibited LPS-induced p38 MAPK activation in the leukocyte fraction of the volunteers. Cytokine production (TNF-alpha, IL-6, IL-10, and IL-1R antagonist) was strongly inhibited by both low and high dose p38 MAPK inhibitor. In addition, p38 MAPK inhibition diminished leukocyte responses, including neutrophilia, release of elastase-alpha(1)-antitrypsin complexes, and up-regulation of CD11b with down-regulation of L-selectin. Finally, blocking p38 MAPK decreased C-reactive protein release. These data identify p38 MAPK as a principal mediator of the inflammatory response to LPS in humans. Furthermore, the anti-inflammatory potential of an oral p38 MAPK inhibitor in humans in vivo suggests that p38 MAPK inhibitors may provide a new therapeutic option in the treatment of inflammatory diseases.  相似文献   

7.
8.
9.
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.  相似文献   

10.
11.
We investigated the involvement of mitogen-activated protein kinases (MAPKs) in the maturation of CD83(-) dendritic cells (DC) derived from human blood monocytes. Maturating agents such as LPS and TNF-alpha induced the phosphorylation of members of the three families of MAPK (extracellular signal-regulated kinase l/2, p46/54 c-Jun N-terminal kinase, and p38 MAPK). SB203580, an inhibitor of the p38 MAPK, but not the extracellular signal-regulated kinase l/2 pathway blocker PD98059, inhibited the up-regulation of CD1a, CD40, CD80, CD86, HLA-DR, and the DC maturation marker CD83 induced by LPS and TNF-alpha. In addition, SB203580 inhibited the enhancement of the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake induced by LPS and TNF-alpha. Likewise, SB203580 partially prevented the up-regulation of IL-1alpha, IL-1beta, IL-lRa, and TNF-alpha mRNA upon stimulation with LPS and TNF-alpha, as well as the release of bioactive TNF-alpha induced by LPS. DC maturation induced by the contact sensitizers 2,4-dinitrofluorobenzene and NiSO(4), as seen by the up-regulation of CD80, CD86, and CD83, was also coupled to the phosphorylation of p38 MAPK, and was inhibited by SB203580. The irritants SDS and benzalkonium chloride that do not induce DC maturation did not trigger p38 MAPK phosphorylation. Together, these data indicate that phosphorylation of p38 MAPK is critical for the maturation of immature DC. These results also suggest that p38 MAPK phosphorylation in DC may become useful for the identification of potential skin contact sensitizers.  相似文献   

12.
13.
14.
15.
16.
17.
The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ∼4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype.  相似文献   

18.
19.
20.
The outcome of malarial anemia is determined by a complex interplay between pro-inflammatory and anti-inflammatory cytokines, its severity associated with accumulation of hemozoin (Hz) in macrophages, elevated IL-10 responses and impaired IL-12 production. Although free heme contributes to malarial anemia by inducing oxidative damage of red blood cells (RBCs) and enhancing their clearance by phagocytes, its impact on IL-12/IL-10 interactions has not been fully characterized. Herein, the effect of hemin (HE) on IL-12 and IL-10 responses was studied in murine bone marrow-derived macrophages (BMDM) and compared with synthetic Hz. Our data reveal that HE induces modest inhibition of IL-12p70 responses to lipopolysaccharide (LPS) whereas Hz significantly impairs IL-12p70 responses to IFNγ/LPS through down-regulation of IL-12p35 and p40 gene expression. Although reactive oxygen species (ROS) are generated after short-term exposure to HE and Hz, prolonged exposure to these iron protoporphyrins has opposite effects on the cellular redox status, HE being the only compound able to promote persistent ROS production. Accordingly, the inhibitory effect of HE on IL-12p70 seems sustained by redox-dependent induction of IL-10 and is partially controlled by the p38 mitogen-activated protein kinase (MAPK) signalling pathway. Indeed, treatment with n-acetylcysteine (NAC) or with the p38 MAPK inhibitor SB203580 inhibits IL-10 responses and significantly restores IL-12p70 responses to IFNγ/LPS in HE-conditioned BMDM. Our results suggest that oxidant stress induced by free heme may potentially contribute to sustained production of IL-10 and down-regulation of IL-12 responses in malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号