首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Boreal forest bird species appear to be divided into lineages endemic to each northern continent, in contrast to Holarctic species living in open habitats. For example, the three-toed woodpecker (Picoides tridactylus) and the winter wren (Troglodytes troglodytes) have divergent Nearctic and Palaearctic mitochondrial DNA clades. Furthermore, in these species, the next closest relative of the Nearctic/Palaearctic sister lineages is the Nearctic clade, suggesting that the Palaearctic may have been colonized from the Nearctic. The aim of this study is to test this pattern of intercontinental divergence and colonization in another Holarctic boreal forest resident – the pine grosbeak (Pinicola enucleator). Location The Holarctic. Methods We sequenced the mitochondrial ND2 gene and Z-specific intron 9 of the ACO1 gene for 74 pine grosbeaks collected across the Holarctic. The sequences were used to reconstruct the phylogeographical history of this species using maximum likelihood analysis. Results We discovered two distinct mitochondrial and Z-specific lineages in the Nearctic and one in the Palaearctic. The two Nearctic mtDNA lineages, one in the northern boreal forest and one in south-western mountain forest, were more closely related to each other than either was to the Palaearctic clade. Two Nearctic Z-chromosome clades were sympatric in the boreal and south-western mountain forests. Unlike the topology of the mtDNA tree, the relationship among the Z-chromosome clades was the same as in the three-toed woodpecker and winter wren [Nearctic (Nearctic, Palaearctic)]. The Palaearctic Z-chromosome clade had much lower genetic diversity and a single-peak mismatch distribution with a mean < 25% of that for either Nearctic region, both of which had ragged mismatch distributions. Main conclusions Our data suggest that, similar to the other boreal forest species, the pine grosbeak has divergent lineages in each northern continent and could have colonized the Palaearctic from the Nearctic. Compared with many Holarctic birds inhabiting open habitats, boreal forest species appear to be more differentiated, possibly because the boreal forests of the Nearctic and Palaearctic have been isolated since the Pliocene (3.5 Ma).  相似文献   

2.
The identity of Simulium murmanum is re-established by designation of lectotype and paralectotype. The species is common and widespread in the northern Holarctic Region and has up to now been reported from the Nearctic Region as S. corbis and from the Palaearctic Region as S. relictum (and S. rostratum, auct., nec Lundstrüm).  相似文献   

3.
A brief general characteristic and review of distribution of the subfamily Ceutorhynchinae over zoogeographical realms are given, with an emphasis on the distribution within the Holarctic and Palaearctic. The potential of exploiting landscapes of all natural zones of the Holarctic by a low-rank taxon is exemplified by the Holarctic Ceutorhynchus cochleariae (Gyll.) species-group comprising ca. 20 species evenly distributed between the Palaearctic and Nearctic. Although neighboring with the powerful centers of tropical biota, the Holarctic fauna of the subfamily Ceutorhynchinae is formed mostly of endemic and subendemic genera which are especially abundant in the Palaearctic. This region possesses the most diversified generic and species composition of the fauna consisting of predominantly endemic and subendemic genera (in the Mediterranean and Saharo-Gobian regions, also of the highly diversified tribe Oxyonychini) up to its southern border. The existence of characteristic transitional faunas in the zones of contact of the Holarctic fauna with the faunas of the tropical regions in East Asia and Mexico is shown. These transitional faunas include a considerable number of endemic taxa of the genus and species groups. A conspicuous feature of the Palaearctic ceutorhynchine fauna is the rather numerous complex of the upland and high-latitude species.  相似文献   

4.
Abstract We studied the historical biogeography of a group of butterflies in the Holarctic region belonging to the genus Coenonympha (Nymphalidae: Satyrinae: Coenonymphina), based on a phylogenetic hypothesis estimated from three genes. The genus is distributed mainly in the Palaearctic region, with two species extending into the Nearctic region. The tree is generally well supported and shows that Coenonympha is paraphyletic with respect to Lyela ( syn.n. ) and Triphysa ( syn.n. ), and we hence synonymize the latter two with Coenonympha. Within Coenonympha we identify three species groups, the tullia, glycerion and hero groups. The North American tullia exemplars are not sister to the Eurasian ones. A diva analysis indicates that the ancestor of the group was present in the Central Palaearctic or Central Palaeartic + Western Palaearctic or Central Palaearctic + Eastern Palaearctic. We conclude that the most likely origin of extant members of Coenonympha was in the Central Asian mountains. The tullia and hero groups started diverging in Europe following dispersal into the region. There have been two independent colonizations into Africa. The drying up of the Mediterranean during the Messinian period probably played an important role, allowing colonization into the Mediterranean islands and Africa.  相似文献   

5.
7. GENERAL NOTES     
Hockey, P. A. R., Brooke, R. K., Cooper, J., Sinclair, J. C. &; Tree, A. J. 1986. Rare and vagrant scolopacid waders in southern Africa. Ostrich 57: 37–55.

Records of rare scolopacid waders in southern Africa are reviewed. 374 records of 15 species are accepted: seven of four Nearctic species. 51 of four Holarctic species and 316 of seven Palaearctic species. Their spatial and temporal (year and season) occurrence is analysed and their habitat requirements in southern Africa are described.  相似文献   

6.
7.
Abstract — Based on published phylogenies for 73 groups of Holarctic non-marine animals, interrelationships between the four Holarctic infraregions (western and eastern Nearctic, western and eastern Palearctic) are examined. The study includes analysis of resolved area cladograms, ancestral areas and dispersal indicated by cladistic subordinateness. Area relationships reflecting present continental configurations (Nearctic vs. Palearctic) dominate the material to the extent that one might speak of a general Holarctic area pattern. Paleocontinental (western Nearctic+eastern Palearctic, western Palearctic+eastern Nearctic) and disjunct patterns are relatively more frequent among groups of higher taxonomic rank. The western Nearctic seems to have played a bigger role than the other infraregions as a center of origin. Two computer programs for constructing resolved area cladograms, viz., COMPONENT 1.5 and COMPONENT 2.0, are compared. The three standard assumptions for biogeographical analysis are compared and arguments are presented in favour of Assumption 0.  相似文献   

8.
Anania coronata (Hufnagel), a Holarctic species of pyraustine crambid moth, has long been treated as having two geographically separated subspecies – the nominotypical Anania coronata in the Palaearctic Region and Anania coronata tertialis (Guenée) in the Nearctic Region. Maximum likelihood and Bayesian inference analysis of mitochondrial DNA barcodes both recover four well‐supported, reciprocally monophyletic groups within Anania coronata. Qualitative and quantitative analyses of genital structures reveal diagnostic differences that correspond to the four barcode lineages. On the basis of both molecular and morphological evidence, we conclude that Anania coronata is actually a complex of four species. Anania coronata (Hufnagel) is restricted to Europe, whereas three species occur in North America: Anania tertialis (Guenée), Anania plectilis (Grote & Robinson) and Anania tennesseensis sp.n. Yang.  相似文献   

9.
The genus Stenamma Westwood comprises a group of cryptic, cold tolerant ants that occur throughout the Holarctic and Middle American regions. Traditional approaches to taxonomy and phylogeny are confounded by multiple factors, including the conservative and often convergent morphology of workers and the rarity of reproductive castes in collections. Monophyly of Stenamma and relationships within the genus are uncertain as nearly all previous taxonomic work has been regional in scope. Furthermore, the sister group to Stenamma has not been well established. Here an extensive molecular dataset consisting of ten genes (~8 kb of data), 48 ingroup taxa (20 Nearctic, 6 Palaearctic and 22 Neotropical) and 8 outgroup taxa (6 closely related non‐Stenamma and 2 additional myrmicines) is used to investigate the broad‐scale phylogeny and evolutionary history of Stenamma. Phylogenetic analysis is performed under maximum likelihood and Bayesian frameworks on individual genes and several alternate concatenated datasets, which are used to investigate the effects of inclusion or exclusion of COI and intronic regions. The timing of Stenamma evolution is inferred in beast and ancestral areas are reconstructed using both the s‐diva and DEC methods, as implemented in the programs rasp and lagrange , respectively. Stenamma is revealed as monophyletic with high support and tentatively is sister to a group of New World species placed currently in Aphaenogaster Mayr and Messor Forel. Within Stenamma, two major clades are recovered: a ‘Holarctic clade’ (HOC) and a ‘Middle American clade’ (MAC). The HOC consists of the European S. striatulum Emery sister to two well‐supported groups, the informal ‘debile’ and ‘brevicorne’ clades. The ‘brevicorne’ clade is entirely Nearctic, whereas the ‘debile’ clade includes both Nearctic and Palaearctic representatives. The MAC occurs from the southern United States to northern South America and, with the exception of S. huachucanum Smith, is almost completely isolated geographically from the HOC. It includes a depauperate northern clade and the ‘MAC core’, which is a diverse assemblage of wet forest adapted species found throughout Central America. Divergence dating and biogeographic reconstruction show that Stenamma is most likely to have originated in the Nearctic at the Eocene–Oligocene boundary (~35 Ma) and diversified more rapidly at 16 and 8 Ma for the HOC and MAC, respectively. Potential environmental factors affecting the evolution of Stenamma include the intense global cooling of the late Eocene combined with aridification and mountain building. The phylogenetic results are discussed in relation to the current Stenamma species groups and several new morphological characters are presented to help in identification.  相似文献   

10.
The data on the structure and level of chromosomal polymorphism in natural populations of species of the genus Chironomus are summarized. A very high level of chromosomal polymorphism was noted for most species. Paracentric inversions prevailed among the chromosomal rearrangements found in natural populations. Changes in the set and frequency of inversion sequences are the most important factor of cytogenetic divergence of populations. Several cytogenetic types of populations were distinguished. The Palaearctic and Nearctic populations of Holarctic species diverged to a greater extent due to the formation of endemic Palearctic and Nearctic inversion sequences. The sequences common for both regions indicated a common ancestry of the populations. The cytogenetic distances between the Palearctic and Nearctic populations are greater by an order of magnitude than those between populations within each zoogeographic region. Divergence of species karyotypes was found to result from fixation of different inversion sequences in the course of evolution. The karyotypes of Palearctic and Nearctic species mainly differ by the presence of endemic Palearctic and Nearctic banding sequences. Several basic sequences common for some species allow the cytogenetic history of their origin to be revealed. A NJ phylogenetic tree was built for the genus Chironomus, demonstrating chromosomal evolution of its species.  相似文献   

11.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

12.
Organisms Diversity & Evolution - The recognition of Holarctic species, those shared between Nearctic and Palaearctic regions, often implies continuous or recent events of gene flow across the...  相似文献   

13.
A taxonomic review of Korean Haliplidae Aubé is presented. Eight species in two genera are recognized, one of which (Haliplus diruptus Balfour‐Browne) is reported for the first time in South Korea. We also found that H. ovalis Sharp previously recorded in the Korean peninsula was an incorrect identification of H. chinensis Falkenström. Habitus and scanning electron microscopy (SEM) photographs, diagnoses of genera, additional characters of species and diagnostic characters with illustrations of the species are provided.  相似文献   

14.
Fleas of the Caucasus belong to 155 species of 40 genera, constituting 17% and 43% of the species and generic composition of the Palaearctic fauna, respectively. The Caucasian fauna includes 23 endemic species but no endemic genera or subgenera. In the number of species, the Caucasian fauna is similar to that of the Mediterranean Subregion and is significantly poorer than the faunas of the Euro-Siberian (by 2.2 times) and Irano-Turanian (by 1.7 times) Subregions. Based on taxonomic diversity, we can propose a hypothesis on the West and East Palaearctic sources of the Caucasian fauna. The West Palaearctic source has determined the distribution of pulicomorph fleas of the families Pulicidae and Coptopsyllidae from Africa, on the one hand, and of fleas of the genera Ctenopthalmus and Palaeopsylla from Europe, on the other hand. Fleas of the Holarctic genera, such as Ceratophyllus and Megabothris, entered the Caucasus by the north Asian route; fleas of the genera Neopsylla, Rhadinopsylla, and Hystrichopsylla migrated to the Caucasus from east and central Asia by the south Asian route, through Middle and Western Asia.  相似文献   

15.
A phylogeny of the 37 known species and subspecies of the micropterous snow fly genus Chionea Dalman is presented using adult morphological characters. The genus contains two major clades: a strictly Palaearctic clade, and a combined Nearctic‐Palaearctic clade with representatives in the Nearctic and Western Palaearctic regions. As there is little congruence between the recovered phylogeny of Chionea and the currently used subgeneric division in Chionea s.s. and Sphaeconophilus Becker, we propose to abandon the use of subgeneric taxa in Chionea. A strictly morphological analysis appears to be insufficient to fully resolve the phylogeny of the genus at the species level, and future molecular work should provide additional evidence for the establishment of relationships among the members of Chionea. The large‐scale historical biogeography of Chionea was analysed using dispersal‐vicariance analysis. The initial distribution area of the genus probably extended in the Eastern Palaearctic, and the Nearctic and the origin of Chionea could be dated in the Late Cretaceous. The various dispersal and vicariance events that led to the major speciation events in the genus are set against major paleogeographic developments. The ancestor of the Western Palaearctic group in the second major clade originated from the Nearctic. The presence of the cold‐adapted Chionea in currently temperate to warm climatic zones in the southern parts of its distribution was analysed using ecological niche modelling. It appears that prolonged periods of climate cooling, as occurred during the Last Glacial Maximum, enabled Chionea to cover large parts of central and southern Europe and reach the southern distribution areas where the genus is present today. A similar biogeographic pattern was less evident in the Nearctic region.  相似文献   

16.
The Palaearctic flea fauna includes 921 species and 479 subspecies from 96 genera of 10 families. Of them, 858 species (94%) from 43 genera are endemic to the Palaearctic; they comprise 40% of the Palaearctic Hystrichopsyllidae, 24% of Ceratophyllidae, and 20% of Leptopsyllidae. Ranges of 581 species (63% of the Palaearctic fauna) are situated within one province or subregion of the Palaearctic. Species with ranges including a part of Asia (592) comprise 87% of the total fauna; 72% of the species (517) are endemic to the Palaearctic. The largest centers of taxonomic diversity of Palaearctic fleas are situated in the East Asian, Central Asian, and Turano-Iranian Subregions: 320 species of fleas (214 of them endemic) from 59 genera (8 endemic) are known from the East Asian Subregion; 270 species (over 120 endemic) from 54 genera (5 endemic) are distributed in the Central Asian Subregion. The Turano-Iranian fauna comprises 213 species (103 endemic) from 47 genera (3 endemic); about 160 species occur in the Turanian Subprovince closest to the Russian borders, one-third of them (52 species, or 33%) are endemic; 69 species more are endemic to the entire Asian part of the Palaearctic. Extra-Asian and extra-Siberian ranges are known in 190 flea species. In the western Palaearctic, 76 species are endemic to the European Province, and 57 species, to the Mediterranean Province; 36 species have Euro-Mediterranean distribution. The fauna of the Saharo-Arabian Subregion comprises 30 species (12 endemic), 6 species have ranges of the Mediterranean-Saharo-Arabian type. Scenarios of the origin of the Siphonaptera at the Triassic-Jurassic boundary are hypothesized. Formation of the Palaearctic flea fauna was mostly supported by the Asian-Indo-Malayan and East Asian-Western American palaeofaunal centers of taxonomic diversity. The long history of faunal exchange between the east Palaearctic and the west Nearctic is manifested by the distribution of the parasites of rodents and insectivores, fleas of the genera Stenoponia, Rhadinopsylla, Nearctopsylla, and Catallagia, belonging to several subfamilies of the Hystrichopsyllidae, as well as members of a number of other flea families. A great number of endemic species in the genera Palaeopsylla and Ctenophthalmus (Hystrichopsyllidae), both in the European and Asian parts of the Palaearctic, can be explained by the junction of the European and Asian continental platforms in the late Cretaceous and their subsequent isolation during the Paleocene. A considerable contribution to the flea fauna in the Russian territory was made by the East Asian-Nearctic center of taxonomic diversity, with a smaller role of the European palaeofauna. Immigration of species of the family Pulicidae from the Afrotropical Region is restricted to the southern territories of Russia.  相似文献   

17.
Hymenopterous parasitoids of grass flies of the family Chloropidae from the Palaearctic and Nearctic regions are reviewed. These parasitoids belong to four superfamilies and 16 families of Hymenoptera and were reared from 39 species of Chloropidae in the Palaearctic (less than 6% of the fauna) and only from 10 species in the Nearctic Region. The majority of parasitoids are oligo-or polyphagous species. To a certain degree, the parasitoids are specialized on one of the three host groups: (1) species developing in shoots of cereal and meadow grasses; (2) forest species developing in cones of coniferous trees; and (3) species associated with the common reed, Phragmites australis. In the Palaearctic Region, the majority of parasitoids (91 species) were reared from Oscinella frit L. s. 1.; a significantly smaller number of these parasites is known from this host in the Nearctic Region, nearly half of the parasitoids being common for both regions. The next large group of parasitoids is associated with gall-inducing species of the genus Lipara Meigen (59 species) developing in the common reed. By contrast with two other groups of parasitoids, this one includes many species of the family Ichneumonidae. It should be noted that taxonomic diversity at the third trophic level is markedly greater than at the second level.  相似文献   

18.
Spiders of the genus Micaria are ground-living mimics of ants. Species delineation in these spiders is challenging, mainly because of exceptional high levels of intraspecific variation masking species boundaries. As implied by preliminary DNA barcode data from Central Europe, the Holarctic and very widely distributed glossy ant-spider M. pulicaria shows cryptic diversity. Here, we disentangle the hidden diversity by means of an integrative taxonomy approach, using mitochondrial DNA, morphometrics, traditional genitalic characters and ecology. Our data suggest the clear delineation of two distinct species, which supports the conception of 19th century taxonomists. These early naturalists distinguished M. pulicaria and a second closely related species based on morphology and natural history, which were synonymized in subsequent taxonomic studies. Therefore, we re-circumscribe M. pulicaria and revalidate the long forgotten M. micans. These two Micaria species co-occur sympatrically in vast areas of the western Palearctic, while the Nearctic region is populated by M. pulicaria alone. Male genitalic traits are more dissimilar in the area of sympatry than in allopatry, suggesting a decisive role of reproductive character displacement in species diversification. Our study emphasizes the value of the early taxonomic literature in integrative taxonomic studies, as it may contain crucial information on natural history that are not regularly recorded by modern taxonomists.  相似文献   

19.
The Hydrachnidia (water mites) represent the most important group of the Arachnida in fresh water. Over 6,000 species have been described worldwide, representing 57 families, 81 subfamilies and more than 400 genera. The article analyzes extant water mite diversity and biogeography. Data on distribution and species richness of water mites are substantial but still far from complete. Many parts of the world are poorly investigated, Oriental and Afrotropical regions in particular. Moreover, information among different freshwater habitats is unbalanced with springs and interstitial waters disproportionately unrepresented. Therefore, more than 10,000 species could be reasonably expected to occur in inland waters worldwide. Based on available information, the Palaearctic region represents one of the better investigated areas with the highest number of species recorded (1,642 species). More than 1,000 species have been recorded in each of the Neotropical (1,305 species) and Nearctic regions (1,025 species). Known species richness is lower in Afrotropical (787 species) and Australasian (694 species) regions, and lowest in the Oriental region (554 species). The total number of genera is not correlated with species richness and is distinctly higher in the Neotropical (164 genera); genus richness is similar in the Palaearctic, Nearctic and Australasian regions (128–131 genera) and is lower in the Afrotropical and Oriental regions with 110 and 94 genera, respectively. A mean number of about three genera per family occur in the Palaeartic, Nearctic and Oriental while an average of more than four genera characterizes the families of Australasian and Afrotropical regions and more than five genera those of the Neotropical. Australasian fauna is also characterized by the highest percentage of endemic genera (62%), followed by Neotropical (50.6%) and Afrotropical (47.2%) regions. Lower values are recorded for the Palaearctic (26.9%), Oriental (24.4%) and Nearctic (21.4%). The Palaearctic and Nearctic have the highest faunistic similarity, some minor affinities are also evident for the generic diversification of Holarctic and Oriental families. The faunas of Southern Hemisphere bioregions are more distinct and characterized by the presence of ancient Gondwanan clades with a regional diversification particularly evident in the Neotropics and Australasia. This scenario of water mite diversity and distribution reflect the basic vicariance pattern, isolation, phylogenetic diversification, recent climatic vicissitudes and episodes of dispersal between adjacent land masses together with extant ecological factors can be evoked to explain distribution patterns at a global scale. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

20.
On any spatial scale, the species composition of a taxonomic group often departs from a phylogenetically random subset drawn from the pool of species available on a higher scale. Analysis of the uneven representation of related lineages in different assemblages can reveal the action of various forces shaping their diversification. For any assemblage, unequal diversification among lineages can be estimated using diversity skewness, an index of the balance of a phylogenetic tree whose values increase with increasing differences in diversification rates among tree branches. We tested for geographical patterns in the diversity skewness of flea assemblages parasitic on small mammals in 26 distinct geographic localities from the Palaearctic and 15 from the Nearctic. Overall, diversity skewness of the Nearctic flea assemblage was unexpectedly high compared to that of the global flea fauna, whereas that of the Palaearctic did not depart from the expectations of a null model. On a smaller scale, the diversity skewness of local flea assemblages was sometimes lower, sometimes higher, but, in most of the 41 localities, it did not differ significantly from that of random subsets taken from the species pool available on the larger spatial scale (either the world fauna or that of the biogeographical realm, i.e. Palaearctic or Nearctic). More importantly, among Palaearctic assemblages, diversity skewness increased with increasing latitude and/or decreasing mean air temperatures. The different patterns observed in the Palaearctic and Nearctic may be in part due the fact that flea diversification appears to have been more intense in the former than the latter, and to differences between them in relief and glacial history. Temperature‐driven speciation rates may well explain the latitudinal gradient in diversity skewness in the Palaearctic. The results illustrate the action of various biogeographical processes in shaping the uneven differentiation of flea lineages on different spatial scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 807–814.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号